
Jeffrey C. Chen
Edward A. Rubin
Gary J. Cornwall

Springer Series in the Data Sciences

Data Science
for Public Policy

Springer Series in the Data Sciences

Series Editors

David Banks, Duke University, Durham, NC, USA

Jianqing Fan, Department of Financial Engineering, Princeton University, Princeton, NJ, USA

Michael Jordan, University of California, Berkeley, CA, USA

Ravi Kannan, Microsoft Research Labs, Bangalore, India

Yurii Nesterov, CORE, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium

Christopher Ré, Department of Computer Science, Stanford University, Stanford, USA

Ryan J. Tibshirani, Department of Statistics, Carnegie Melon University, Pittsburgh, PA, USA

Larry Wasserman, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA

Springer Series in the Data Sciences focuses primarily on monographs and graduate level
textbooks. The target audience includes students and researchers working in and across the
fields of mathematics, theoretical computer science, and statistics. Data Analysis and
Interpretation is a broad field encompassing some of the fastest-growing subjects in
interdisciplinary statistics, mathematics and computer science. It encompasses a process of
inspecting, cleaning, transforming, and modeling data with the goal of discovering useful
information, suggesting conclusions, and supporting decision making. Data analysis has
multiple facets and approaches, including diverse techniques under a variety of names, in
different business, science, and social science domains. Springer Series in the Data Sciences
addresses the needs of a broad spectrum of scientists and students who are utilizing
quantitative methods in their daily research. The series is broad but structured, including topics
within all core areas of the data sciences. The breadth of the series reflects the variation of
scholarly projects currently underway in the field of machine learning.

More information about this series at http://www.springer.com/series/13852

http://www.springer.com/series/13852

Jeffrey C. Chen • Edward A. Rubin •

Gary J. Cornwall

Data Science for Public Policy

123

Jeffrey C. Chen
Bennett Institute for Public Policy
University of Cambridge
Cambridge, UK

Edward A. Rubin
Department of Economics
University of Oregon
Eugene, OR, USA

Gary J. Cornwall
Department of Commerce
Bureau of Economic Analysis
Suitland, MD, USA

ISSN 2365-5674 ISSN 2365-5682 (electronic)
Springer Series in the Data Sciences
ISBN 978-3-030-71351-5 ISBN 978-3-030-71352-2 (eBook)
https://doi.org/10.1007/978-3-030-71352-2

Mathematics Subject Classification: 98B82, 62-01, 62-04, 62-07, 62H11, 62H12, 62J05, 62J07, 68T50, 68-01, 91-01,
91C20, 68N01, 68N15, 62P20, 62P25, 62P12

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed
to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been
made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3479-5636
https://doi.org/10.1007/978-3-030-71352-2

To our families:

Maya and Olivia

Michelle, Theo and Clara

Danielle and Claire

Preface

Public policy has long relied on the empirical traditions of econometrics and causal inference. When new regula-
tions, laws, and new programs are created, policy analysts and social scientists draw on experimental and
quasi-experimental methods to assess if these policy implementations have any effect. This empirical evidence is
then added to a body of knowledge that identifies causes and effects, which in turn inform future policies that can
improve people’s lives. The feedback loop can take years (if not decades), but with the advent of data science, we are
presented with the opportunity to increase the velocity and precision of decisions. While data science is integrated
into many companies of private industry, its role in government is still evolving and being clarified.

Policy analysts strive to understand the measured effects of decisions, but analysts can conflate this measurement
with predicting who will most benefit from a policy. Understanding an effect is the pursuit of knowledge, looking
back into the annals of history to offer an explanation that satisfies the whys. In contrast, being able to anticipate
what will happen to program participants is a skill that de-risks decisions, providing operational knowledge about
who and what. These distinctions are not well known, yet government agencies are investing in their data science
capabilities.

From working in public policy and government operations, we have had the opportunity to work on data science in
this special context. When empowered by the government apparatus, data scientists can unlock the possibility of
precision policy. Not only can data science inform policy makers and decision makers to arrive at on-point decisions,
but they can develop machine learning applications that have transformative potential. Machine learning can
surface patterns in complex datasets, enable precise targeting and prioritization use cases, and inform if not
automate decisions. The possibilities and shortcomings have not been documented and illustrated for a public and
social sector audience. This textbook introduces aspiring and veteran public servants to core concepts and aims to
be the springboard for building data science capacity.

This book has been shaped by a number of brilliant and generous people. Dr. Kyle Bradbury, Dr. Ching-Ling Chen,
Dr. Ying-Chih Chen, Christopher Eshleman, Dr. Tyrone W. A. Grandison, Aya Hamano, Annabel Jouard, Artem
Kopelev, Dr. Jacob Model, Wade Petty, Alice Ramey, Robin Thottungal, and Levi Weible read many chapters of
our text, suggesting ways to simplify complex ideas into a form that is appropriate for policy and strategy audiences.
We are incredibly grateful for their contributions. Lastly, our formative experiences in government were enriched by
dedicated experts, namely, Jeffrey Tyrens (New York City Mayor’s Office of Operations), Jeffrey Roth (New York
City Fire Department), Dr. Howard Friedman (United Nations Population Fund), Dr. Curt Tilmes (NASA—
Goddard Space Flight Center), Dr. Dennis Fixler, and Dr. Benjamin Bridgman (U.S. Bureau of Economic
Analysis).

Cambridge, UK Jeffrey C. Chen

Eugene, USA Edward A. Rubin

Suitland, USA Gary J. Cornwall

vii

Contents

Preface vii

1 An Introduction 1

1.1 Why we wrote this book . 2

1.2 What we assume . 2

1.3 How this book is structured . 3

2 The Case for Programming 5

2.1 Doing visual analytics since the 1780s . 5

2.2 How does programming work? . 7

2.3 Setting up R and RStudio . 8

2.3.1 Installing R . 8

2.3.2 Installing RStudio . 9

2.3.3 DIY: Running your first code snippet . 10

2.4 Making the case for open-source software . 11

3 Elements of Programming 13

3.1 Data are everywhere . 13

3.2 Data types . 14

3.2.1 numeric . 14

3.2.2 character . 14

3.2.3 logical . 14

3.2.4 factor . 16

3.2.5 date . 16

3.2.6 The class function . 16

3.3 Objects in R . 17

3.4 R’s object classes . 18

3.4.1 vector . 18

3.4.2 matrix . 18

3.4.3 data.frame . 19

3.4.4 list . 20

3.4.5 The class function, v2 . 21

3.4.6 More classes . 22

3.5 Packages . 22

3.5.1 Base R and the need to extend functionality . 22

3.5.2 Installing packages . 22

3.5.3 Loading packages . 23

3.5.4 Package management and pacman . 23

3.6 Data input/output . 24

3.6.1 Directories . 24

ix

3.6.2 Load functions . 26

3.6.3 Datasets . 26

3.7 Finding help . 27

3.7.1 Help function . 27

3.7.2 Google and online communities . 27

3.8 Beyond this chapter . 27

3.8.1 Best practices . 27

3.8.2 Further study . 28

3.9 DIY: Loading solar energy data from the web . 29

4 Transforming Data 33

4.1 Importing and assembling data . 34

4.1.1 Loading files . 35

4.2 Manipulating values . 38

4.2.1 Text manipulation functions . 39

4.2.2 Regular Expressions (RegEx) . 40

4.2.3 DIY: Working with PII . 43

4.2.4 Working with dates . 44

4.3 The structure of data . 45

4.3.1 Matrix or data frame? . 45

4.3.2 Array indexes . 45

4.3.3 Subsetting . 46

4.3.4 Sorting and re-ordering . 47

4.3.5 Aggregating data . 48

4.3.6 Reshaping data . 49

4.4 Control structures . 51

4.4.1 If statement . 52

4.4.2 For-loops . 53

4.4.3 While . 55

4.5 Functions . 56

4.6 Beyond this chapter . 57

4.6.1 Best practices . 57

4.6.2 Further study . 58

5 Record Linkage 61

5.1 Edward Kennedy, Bill de Blasio, and Bayerische Motoren Werke . 61

5.2 How does record linkage work? . 62

5.3 Pre-processing the data . 63

5.4 De-duplication . 66

5.5 Deterministic record linkage . 67

5.6 Comparison functions . 70

5.6.1 Edit distances . 70

5.6.2 Phonetic algorithms . 71

5.6.3 New tricks, same heuristics . 73

5.7 Probabilistic record linkage . 74

5.8 Data privacy . 76

5.9 DIY: Matching people in the UK-UN sanction lists . 77

5.10 Beyond this chapter . 80

5.10.1 Best practices . 80

5.10.2 Further study . 81

6 Exploratory Data Analysis 83

6.1 Visually detecting patterns . 83

6.2 The gist of EDA . 85

x CONTENTS

6.3 Visualizing distributions . 87

6.3.1 Skewed variables . 92

6.4 Exploring missing values . 94

6.4.1 Encodings . 94

6.4.2 Missing value functions . 95

6.4.3 Exploring missingness . 96

6.4.4 Treating missingness . 98

6.5 Analyzing time series . 103

6.6 Finding visual correlations . 105

6.6.1 Visual analysis on high-dimensional datasets . 108

6.7 Beyond this chapter . 109

7 Regression Analysis 113

7.1 Measuring and predicting the preferences of society . 113

7.2 Simple linear regression . 114

7.2.1 Mean squared error . 116

7.2.2 Ordinary least squares . 117

7.2.3 DIY: A simple hedonic model . 118

7.3 Checking for linearity . 121

7.4 Multiple regression . 123

7.4.1 Non-linearities . 124

7.4.2 Discrete variables . 125

7.4.3 Discontinuities . 127

7.4.4 Measures of model fitness . 128

7.4.5 DIY: Choosing between models . 129

7.4.6 DIY: Housing prices over time . 132

7.5 Beyond this chapter . 137

8 Framing Classification 139

8.1 Playing with fire . 139

8.1.1 FireCast . 139

8.1.2 What’s a classifier? . 140

8.2 The basics of classifiers . 141

8.2.1 The anatomy of a classifier . 141

8.2.2 Finding signal in classification contexts . 142

8.2.3 Measuring accuracy . 142

8.3 Logistic regression . 146

8.3.1 The social science workhorse . 146

8.3.2 Telling the story from coefficients . 147

8.3.3 How are coefficients learned? . 148

8.3.4 In practice . 148

8.3.5 DIY: Expanding health care coverage . 150

8.4 Regularized regression . 156

8.4.1 From regularization to interpretation . 158

8.4.2 DIY: Re-visiting health care coverage . 158

8.5 Beyond this chapter . 161

9 Three Quantitative Perspectives 163

9.1 Descriptive analysis . 164

9.2 Causal inference . 165

9.2.1 Potential outcomes framework . 166

9.2.2 Regression discontinuity . 167

9.2.3 Difference-in-differences . 172

CONTENTS xi

9.3 Prediction . 174

9.3.1 Understanding accuracy . 175

9.3.2 Model validation . 180

9.4 Beyond this chapter . 182

10 Prediction 185

10.1 The role of algorithms . 185

10.2 Data science pipelines . 187

10.3 K-Nearest Neighbors (k-NN) . 189

10.3.1 Under the hood . 190

10.3.2 DIY: Predicting the extent of storm damage . 192

10.4 Tree-based learning . 195

10.4.1 Classification and Regression Trees (CART) . 196

10.4.2 Random forests . 201

10.4.3 In practice . 203

10.4.4 DIY: Wage prediction with CART and random forests . 204

10.5 An introduction to other algorithms . 210

10.5.1 Gradient boosting . 211

10.5.2 Neural networks . 212

10.6 Beyond this chapter . 215

11 Cluster Analysis 217

11.1 Things closer together are more related . 217

11.2 Foundational concepts . 218

11.3 k-means . 219

11.3.1 Under the hood . 219

11.3.2 In Practice . 221

11.3.3 DIY: Clustering for economic development . 223

11.4 Hierarchical clustering . 226

11.4.1 Under the hood . 227

11.4.2 In Practice . 229

11.4.3 DIY: Clustering time series . 230

11.5 Beyond this chapter . 234

12 Spatial Data 237

12.1 Anticipating climate impacts . 237

12.2 Classes of spatial data . 239

12.3 Rasters . 239

12.3.1 Raster files . 241

12.3.2 Rasters and math . 242

12.3.3 DIY: Working with raster math . 242

12.4 Vectors . 244

12.4.1 Vector files . 244

12.4.2 Converting points to spatial objects . 245

12.4.3 Coordinate Reference Systems . 246

12.4.4 DIY: Converting coordinates into point vectors . 248

12.4.5 Reading shapefiles . 249

12.4.6 Spatial joins . 250

12.4.7 DIY: Analyzing spatial relationships . 252

12.5 Beyond this chapter . 256

xii CONTENTS

13 Natural Language 259

13.1 Transforming text into data . 260

13.1.1 Processing textual data . 260

13.1.2 TF-IDF . 262

13.1.3 Document similarities . 263

13.1.4 DIY: Basic text processing . 263

13.2 Sentiment Analysis . 266

13.2.1 Sentiment lexicons . 267

13.2.2 Calculating sentiment scores . 267

13.2.3 DIY: Scoring text for sentiment . 269

13.3 Topic modeling . 271

13.3.1 A conceptual base . 271

13.3.2 How do topics models work? . 272

13.3.3 DIY: Finding topics in presidential speeches . 273

13.4 Beyond this chapter . 280

13.4.1 Best practices . 280

13.4.2 Further study . 281

14 The Ethics of Data Science 283

14.1 An emerging debate . 283

14.2 Bias . 284

14.2.1 Sampling bias . 285

14.2.2 Measurement bias . 287

14.2.3 Prejudicial bias . 289

14.3 Fairness . 289

14.3.1 Score-based fairness . 290

14.3.2 Accuracy-based fairness . 290

14.3.3 Other considerations . 291

14.4 Transparency and Interpretability . 291

14.4.1 Interpretability . 292

14.4.2 Explainability . 293

14.5 Privacy . 295

14.5.1 An evolving landscape . 295

14.5.2 Privacy strategies . 295

14.6 Beyond this chapter . 297

15 Developing Data Products 299

15.1 Meeting people where they are . 299

15.2 Designing for impact . 301

15.2.1 Identify a user need . 301

15.2.2 Size up the situation . 302

15.2.3 Build a lean “V1” . 303

15.2.4 Test and evaluate its impact, then iterate . 303

15.3 Communicating data science projects . 304

15.3.1 Presentations . 304

15.3.2 Written reports . 306

15.4 Reporting dashboards . 308

15.5 Prediction products . 311

15.5.1 Prioritization and targeting lists . 311

15.5.2 Scoring engines . 311

15.6 Continuing to hone your craft . 313

15.7 Where to next? . 315

CONTENTS xiii

16 Building Data Teams 317

16.1 Establishing a baseline . 317

16.2 Operating models . 320

16.2.1 Center of excellence . 320

16.2.2 Hack teams . 321

16.2.3 Consultancy . 323

16.2.4 Matrix organizations . 324

16.3 Identifying roles . 326

16.3.1 The manager . 326

16.3.2 Analytics roles . 326

16.3.3 Data product roles . 327

16.3.4 Titles in the civil service system . 328

16.4 The hiring process . 328

16.4.1 Job postings and application review . 328

16.4.2 Interviews . 329

16.5 Final thoughts . 330

Appendix A: Planning a Data Product 331

Key Questions . 331

Appendix B: Interview Questions 335

Getting to know the candidate . 335

Business acumen . 335

Project experience . 335

Whiteboard questions . 336

Statistics . 336

Causal inference . 337

Estimation versus prediction . 337

Machine learning . 338

Model evaluation . 339

Communication and visualization . 339

Programming . 340

Take-home questions . 341

References 343

Index 357

xiv CONTENTS

Chapter 1

An Introduction

A campaign manager, an economist, and a data scientist walk into a bar after their candidate delivered a
new stump speech. The campaign manager yells excitedly, “Did you hear that crowd? I have a great feeling
about this. Everyone, next round’s on me!”

The economist adds, “That new education initiative is sure to fill that tech jobs vacancy gap. I’m sure this’ll
also do wonders for our state’s productivity numbers!”

Without looking up from her laptop, the data scientist sighs, then as the bearer of bad news informs the
group, “I just plugged in the polling results that came out today and integrated it with my models. It looks
like focusing on education would equate to a 70% chance of losing by more than five percentage points. We
should instead focus on healthcare in this list of counties and voters with this social media profile, which
would give us a good shot at a two-percentage point lead”.

After a few moments of awkward silence, the campaign manager smoothly counters, “Well, at least we nailed
our campaign music playlist!”

The data scientist mutters under her breath, “Well, about that. . . ”

Data scientists are a relatively recent entrant into the ecosystem of public policy. Drawing upon an interdis-
ciplinary skill set that joins scientific methods and algorithmic approaches, data scientists convert expansive,
diverse, and timely data into useful insights and intelligent products. There are many aspects of data science
that are shared with other fields. The social and natural sciences typically rely on descriptive analysis and
causal inference to craft a narrative. In the policy space, social scientists will formulate normative theories
that guide how institutions should act (e.g., education initiatives to close the job vacancy gap). Data sci-
ence approaches problems by adding the edge of prediction. By leveraging all available information, good
predictions can reliably anticipate what will happen next. By de-mystifying and de-risking the future, data
scientists can develop data products that solve a user need through provision of forecasts, prioritization of
resources, measuring effects of policies, among others.

In the public sector, data science can hold the potential of enabling precision policy, allowing governments
and social sector to implement targeted programs to address society’s biggest problems at scale. For example,
to improve safety for firefighters after a tragic incident, Fire Department of New York (FDNY) developed a
prediction algorithm known as FireCast to target inspections to fire traps before fires occur—a move from
reactive to proactive. Political campaigns weave social media, survey, and demographic data to cluster the
electorate into discrete segments and craft targeted messaging to each—a strategy to optimize resources.
In many cases, data scientists helping campaigns also “nowcast” polls to help guide where resources should
be invested. By leveraging data science to inform large decisions, and even micro-decisions on the ground,
the spirit of a policy can be more accurately and precisely reflected in the everyday operations of delivering
public services.
© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_1

2 CHAPTER 1. AN INTRODUCTION

1.1 Why we wrote this book
The authors of this book have led data science projects in over 40 domains, working for two city govern-
ment administrations, two US presidential administrations, four research universities, large financial and
e-commerce companies, consultancies, non-profits, and international development authorities, among others.
Through our collective experiences, we found that the current state of data anything in the public policy is
well developed in the space of evaluation and inference as it follows the traditions of the social sciences. But
there are large gaps as well.

The tools of public policy focus on strategy and storytelling. Strategies focus on the long-term aim of public
services, relying on retrospective evaluations to gage if programs are working as intended. Public policy and
business schools teach correlative analysis and causal inference to extract the treatment effect of a policy.
But there is a blind spot for data-driven tactics—the planned actions that help reach an ideal end state.
Tactics maximize the chance of wins here, now, tomorrow, and the day after. Data science and prediction
paradigms can enable timelier, smarter decisions to maximize success with the power of foresight. But to
make use of data science requires a more forward-leaning posture that embraces experimentation. It also
requires a focus on implementation—moving an idea to something real and tangible.

We hope that we can inspire the next generation of data scientists and help them see the distinctions between
data-driven strategy and tactics. Seeing these differences, in turn, can help one imagine a future of public
services that injects the intellectual adrenaline that fuels innovation. We have written this textbook for the
public policy and business students who want to push beyond strategy decks and retrospective program
evaluation and use data as a means of direct action. We have written this text for the government data
analyst who wants to scale ideas beyond narrative using data to direct targeted interventions. We have
written this for anyone who believes we can do more for society through data.

1.2 What we assume
Data science is a complex and sprawling subject area that can take years to master. For experts in the
field, complex concepts are communicated in only a few pages in a peer-reviewed academic article. But
even for those who are trained in basic econometrics, data science techniques can prove to be challenging
to understand, as it requires viewing data problems from an entirely different perspective. For example, it
might not be immediately evident why it would be acceptable to apply a non-parametric algorithm like the
Random Forest algorithm for prediction problems when it does not have an intuitive linear interpretation. As
we will see, the standards of inference and prediction are often conflated—they are not well defined in policy
and add unnecessary normative bounds that suppress innovation. To add data science to one’s repertoire
requires an open mind.

Furthermore, the ethos of data scientists is often different than their social and natural science counterparts—
there is a focus on analyzing data for a scientific purpose, but also building data-enabled applications.
Therefore, implementation through programming is often necessary.

We lay out foundational concepts, doing so with the backdrop of public policy and strategy. Where possible,
we tell the story of how data science and policy interact. For this book to be effective, we assume an
understanding of basic probability theory and statistics with prior exposure to:

• Summary statistics such as mean, median, mode, standard deviation, and percentiles;
• Data structures such as tabular data in spreadsheets; and
• Hypothesis testing such as the T-test and the chi-square test.

We heavily rely on programming to bring to life practical data science applications. Prior experience in a
spreadsheet software like Excel can be beneficial to understand data structures, and experience with a high-
level programming such as Stata will ease the transition to a statistical programming language (namely, R).

1.3. HOW THIS BOOK IS STRUCTURED 3

1.3 How this book is structured
How we wrote this book. Through serving as advisors to both executives and senior officials, we have
seen that there is much respect for the field of data science. Spending the first moments of a briefing in
the technical weeds misses an opportunity to construct the architecture of an argument and gain trust in
what we do. We thus take a different approach to introducing the technical machinery of data science. Each
chapter begins with the big picture by placing a technical concept in the context of an experience or story
from working in the public sector. These experiences easily generalize to any strategy environment and are
intended to help the reader visualize how data science is relevant in these contexts. We then lay the technical
foundation through a mixture of analogies, mathematical formulae, and illustrations. As data science is a
discipline that emphasizes action, we likewise emphasize the role of writing code and provide well-tested
coded.

At no point do we attempt to mathematically derive the full quantitative splendor of techniques. Other
texts such as Elements of Statistical Learning and Pattern Recognition and Machine Learning already fill
that role. We do, however, believe that the advantage of data science is implementation—delivery is the
strategy. Where necessary, we illustrate key mathematics concepts through simple arithmetic examples. We
have focused each chapter on knowing enough to enable thoughtful action so we help build momentum. For
this reason, we dedicate significant portions of the text to extensive Do-It-Yourself (DIY) examples that walk
through each step of implementing the code of a data science project. In many cases, the code can be applied
to other problems. Most chapters have DIY sections that use real data to solve public problems while others
interlace code to illustrate otherwise difficult concepts.

Data and code resources. We have assembled a wealth of datasets and coding resources on Github
(https://github.com/DataScienceForPublicPolicy). On this page, there is an assortment of analyses and
applications as well as novel datasets. For example, we include code repositories for building an interactive
dashboard and the DIY for predicting where downed trees are likely located after a hurricane.

There is no better way to learn than doing. Thus, we have developed over 20 Do It Yourself (DIY) sections
that illustrate the mechanics of data science projects and discuss how projects fit into the work of the public
and social sectors. To download the full DIY repository, visit the following URL:

https://github.com/DataScienceForPublicPolicy/diys/archive/main.zip

and your web browser will download the full repository as a zip file. We recommend that you unzip the
repository and place it in directory that you can easily access. For more about the DIYs, visit https://
github.com/DataScienceForPublicPolicy/diys.

Roadmap. The next 15 chapters are arranged into four sections that cover issues that data scientists
commonly encounter in the public sector.

As computer programming is core to data science, the first section (Chapters 2 through 5) introduces ways of
working with data and code. We focus on building core programming skills in R—a commonly used statistical
programming language. Chapter 2 lays a conceptual foundation of how programming works and how to install
R. In Chapter 3, we introduce basic coding concepts such as types of objects, class, data structures among
other elements of programming languages. Chapter 4 focuses on how to manipulate data so that it is useful
for analysis and application. As the value of big data often lies in bringing information together from multiple
datasets, Chapter 5 is dedicated to techniques for joining data together—a topic that is not often covered
in policy or social science classes.

With the foundation laid, we turn our focus to using techniques that are already common in public policy.
Chapter 6 focuses on visual analytics through exploratory data analysis—a way to formulate hypotheses and
investigate the qualities of a dataset. Chapter 7 is our first step into proper statistical modeling, presenting the
regression models for continuous outcomes such as revenue, traffic, crime, etc. Chapter 8 extends regression
frameworks to classification problems (e.g., binary outcomes) and introduces regularized techniques that
bridge traditional statistical models with machine learning approaches. Chapter 9 takes a step back from
the analytical approaches to consider how a single model could be used for distinct types of applications,

https://github.com/DataScienceForPublicPolicy
https://github.com/DataScienceForPublicPolicy/diys/archive/main.zip
https://github.com/DataScienceForPublicPolicy/diys
https://github.com/DataScienceForPublicPolicy/diys

4 CHAPTER 1. AN INTRODUCTION

namely, descriptive analysis, causal inference, and prediction. The distinctions we draw in this chapter are
key in understanding why social, natural, and data scientists have divergent views and ways of working.

The third section dives into supervised learning and unsupervised learning approaches—two branches of
machine learning that support most data-driven use cases. Chapter 10 exclusively focuses on prediction,
starting with simple methods like k-nearest neighbors, then advances to tree-based learning that is appro-
priate for the types of data used in the public sector. The performance gain of some of these techniques can
be quite notable, thus mastering these methods can open new possibilities in policy environments. Chap-
ter 11 explores unsupervised learning that brings structure to otherwise unlabeled data through clustering
of observations. Chapters 12 and 13 cover how data science can help policy and strategy organizations make
use of new types of data, namely, spatial data (e.g., rasters, vector files, mapping) and natural language
processing, respectively.

The last section discusses the social and organizational issues that influence the success and acceptance of
data science pursuits. Chapter 14 provides a survey of ethical considerations that are subject of vigorous
debate, such as bias, fairness, transparency, and privacy. Chapter 15 lays out the concept of a data product
that transforms data into a tool to address a user’s needs. Lastly, Chapter 16 describes how to design and
build data science teams, including typical roles, operating structures, and the hiring process.

Chapter 2

The Case for Programming

2.1 Doing visual analytics since the 1780s
Between 1786 and 1802, a Scottish engineer named William Playfair published Commercial and Political
Atlas, a collection of data visualizations illustrating economic and political trends of the 18th century. The
book introduced the first line and pie charts, skillfully designed and furnished with narrative to guide
readers through the economic patterns of the day. While his inferences and conclusions were correlative and
speculative, his work is often credited as the beginning of graphical statistics—gathering information in a
form that easily conveys insight-packed patterns. For example, in Figure 2.1, England’s imports and exports
to and from Flanders are plotted for the period between 1700 and 1800 (Playfair 1801). It is striking how
the charts resemble the modern line graphs that inundate our daily lives—a smooth pair of lines for each
import and export move across the page, illustrating how trade balances increasingly favored England.

At the time when Playfair’s work was published, an annual-level dataset containing variables for time,
imports, and exports spanning an 100-year period would have been considered big data. Collecting such
data would have required a significant time investment and coordination. Developing and perfecting an
innovative format to communicate data was also no easy task. Indeed, it was the data science of its age and
was the sort of high-browed novelty that drew the attention of royalty in Europe, particularly in France.

The time required to amass, rationalize, graph, and publish the data was expensive. Furthermore, the benefits
from the insights could not have been habitually relied upon as information traveled slowly. The decision-
making cadence was quite slower—data simply could not allow for real-time decisions. For example, the War
of 1812 between the British and Americans ended on December 24, 1814, but the Americans’ greatest victory
of the war was won two weeks after the peace agreement was signed (“The Battle of New Orleans” 2010).
Indeed, news traveled slowly in those days. Over time, the world has grown more interconnected and the
speed of communication has greatly improved. The big data techniques of the industrial revolution became
so commonplace that elements of it are covered in math curricula in grade schools.

With the advent of computer programming, the mastery required to draft a chart has been democratized
in the form of software thanks to a new type of engineer—the software engineer. By leveraging computer
programming, software engineers develop programs that allow even the most novice of analysts to apply
complex algorithms. New generations of economists and quantitatively minded individuals can stand on
Playfair’s shoulders without years of apprenticeship using drafting tools. Each analytical task is programmed
to imitate an expert’s abilities: data are transformed by a computer program following a series of well-planned,
pre-defined steps, returning a specific result. There are inordinate number of micro-decisions that determine
the success and utility of a graph—how thick to make a line, what color should the palette be, etc. Engineers
can set sensible defaults that make those decisions for the user, which reduces the intellectual overhead. For
most who have not had the opportunity to program, interaction with data is usually through What You See
Is What You Get (WYSIWYG) applications—you can directly manipulate visual elements on the screen into
the desired form. The output is exactly what is seen on screen. This format is ideal for quickly and tangibly

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_2

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_2

6 CHAPTER 2. THE CASE FOR PROGRAMMING

Figure 2.1: Plate 9 from Playfair’s Commercial and Political Atlas, 1801.

exploring new data, grabbing the data bull by the horns and showing it who’s boss.

Why would anyone need something more than this?

Wrangling that bull is a manual process—every step of the process involves some clicking, typing, and drag-
ging. Suppose you need to calculate the mean for each of 100 variables in a spreadsheet using a WYSIWYG
interface. The process might resemble the following:

1. Identify a suitable row to place the calculations.
2. Type in the command “average” in a cell.
3. Navigate the data to the relevant range values on which to calculate the average.
4. Navigate or type in the location of the range within the “average” function. Press enter.
5. Copy and paste this command across 100 columns.
6. Sometimes, the command might be accidentally applied to too few (e.g., 92, 93, 94 columns) or too

many columns (e.g., 103, 104, 106 columns)—some edits may be in order.
The process is only a half-dozen actions if you know your way around the spreadsheet, but many more without
the know-how of productivity-enhancing hacks. Alternatively, this whole process can also be expressed with
a single command in a programming language (or two commands if one also accounts for the line of code to
import data). The colMeans function in the R statistical programming language, for example, can calculate
the mean for as many columns as the computer’s memory can hold. The np.sum function in the Python
programming language’s numpy library can achieve the same result. The difference between one and six
actions to calculating a number is not particularly large—especially if the task is done only once.

What if the same problem were scaled to an arbitrarily large number of spreadsheets, say 1,000 or 10,000
or 1,000,000? Achieving the objective becomes burdensome by the sheer scale of the problem. What if the
task also were expanded to processing billions of records, producing forecasts, and writing simple descriptive
summaries of the data? The manual spreadsheet edits would be beyond arduous, let alone the amount of
review required to pinpoint errors. Checking for errors would then compound the time required to complete
the task.

The advantage of programming becomes far clearer. By programming, repetitive tasks can be delegated to a
computer. Complicated tasks only have to be defined once, then applied to any number of other instances.

2.2. HOW DOES PROGRAMMING WORK? 7

When applied to policy, programming has the potential of transforming the art of policy into a science of
precision policy. A data scientist can process an inordinate amount of data to train an algorithm to predict
the seemingly unpredictable, like whether someone will recidivate, hit economic troubles, or need mental
health care. Programming also allows huge sums of data to be processed to make even more profound causal
analyses.

In this chapter, we take the first step toward programming by introducing conceptual fundamentals: how
does programming work, where do we get a programming language, how to interact with code, and how to
justify its use. In subsequent chapters, we build upon these ideas to develop programs that load, transform,
and apply data in impactful ways.

2.2 How does programming work?
Programming languages allow users to communicate with a computer’s Central Processing Unit (CPU) in a
way that makes sense to both humans and computers. The CPU is the brain of a computer, comprised of a
large number of switches. The computer can carry out basic computing functions like math and input/output
operations by flipping switches on and off in a certain patterns and sequences. In a way, CPUs allow computers
to think. CPUs do not speak human language, however. Instead, they rely on instructions communicated in
machine language. For a programmer to pass instructions to the CPU, she needs the help of a programming
language to translate between human commands and machine language.

It seems abstract at first, but we regularly use intermediary devises to get the job done. For example, to
drive a car from point A to point B, a driver needs to regulate the speed using both gas and brake pedals,
as well as guide the vehicle through the streets through a series of well-timed, coordinated rotations of the
steering wheel. The user actions are translated into signals that a car understands. For example, when a
driver presses down on a gas pedal, the throttle control receives the force and translates it into an amount
of fuel that is injected into the engine. The result: acceleration. The system that controls acceleration is
a layer that abstracts the acceleration process into something intuitive for humans. Otherwise, the driver
would need to squeeze a syringe of fuel into the engine and hope for the best.

There are different types of programming languages for different types of problems. Some will abstract the
interaction with the CPU to high-level functions (e.g., running an entire algorithm) while others are useful
for low-level functions that are in the computational weeds. We can group programming languages into three
broad groups:

• Compiled languages rely on a compiler program to translate source code into binary machine code,
which on its own is self-contained and executable. After translation, the resulting binary code is self
contained and can be executed without any reliance on the source code. In data science, a common
compiled language is C. As the code is compiled into binary once the source code is completed, the
performance tends to be faster.

• Interpreted languages rely on an interpreter program to execute source code. Unlike compiled languages,
interpreted languages are fully reliant on the interpreter program, meaning that each time a user
wants to take an action, the source code needs to be re-run and interpreted through the program.
The interactivity of web browsers is made possible by an interpreted scripting language known as
JavaScript. For advanced statistical research, the R is one of the interpreted languages of choice for
statisticians, social scientists, and data scientists.

• Pseudocode languages (or p-code) are hybrids between compiled and interpreted languages. The source
code is compiled into bytecode—a compact instruction set that is designed for specialized, efficient
interpreters when executed. A common example of a p-code language is Python.

What do programming languages mean for data science? Data science tends to have the greatest payoff when
learning patterns at a large scale. To achieve broad impact, programming is a must. Two languages have
proven themselves to be the workhorses of data science: R and Python.

8 CHAPTER 2. THE CASE FOR PROGRAMMING

R is a common language among statisticians, epidemiologists, social scientists, and natural scientists as
it is designed for mathematical computation. The language is optimized specifically for all things math
and statistics, ranging from matrix algebra to more complex optimization. The implications are that the
language is quite extensible. In fact, thousands of code libraries—sets of functions that work together—
extend R’s usefulness from visualizations to machine learning. The language does not naturally lend itself to
creating standalone web applications, but recent advancements have vastly improved R’s ability to support
production-grade use cases.

Python is a general-purpose scripting language and a favorite of software engineering teams. Not only is it
used for deploying web applications such as websites and Application Programming Interfaces (APIs), but
it has been extended to mathematical and statistical computation through an extensive set of code libraries.
A key feature of Python is its simplicity and readability.

Which one language should a beginner choose first? The decision rests on the tasks you need to accomplish.
For settings where data informs strategy—identifying which levers can be pulled to affect change, learning
R is a sound choice. It is more than able to conduct data analyses, build sophisticated prediction models,
visualize insights, and develop interactive tools. For cases where data-driven applications need to be scaled to
a large number of users—like streaming media, social media ads, or financial services—starting with Python
makes more sense.

Of course data scientist can start with one language and then learn another. In fact, knowing more than one
language makes data scientists more versatile and marketable. There are other languages that complement
these core languages. Structured Query Language (SQL), for example, is the most common language for
managing databases and extracting data. JavaScript is common for high-end custom visualizations. Scala is
a language used for writing jobs for real-time data frameworks like Spark.

In this text, we introduce data science through R. Let’s get the software up and running.

2.3 Setting up R and RStudio
R is an open-source language developed and maintained by a large community of high-powered contributors
who make available the core program and the thousands of libraries that extend its functionality through
the Comprehensive R Archive Network. As it is open source, it is free to use. In fact, many of the most
influential programming languages in use today are open source as everyone can benefit from everyone else’s
code contributions.

2.3.1 Installing R
To install R, visit the CRAN website:

• Visit https://cran.r-project.org/.
• Select “Download R” for your computer’s operating system or OS (Windows, Linux, or Mac).
• Download the latest .pkg file that your OS can support.
• Open and install the .downloaded file by following the instructions.

Upon installing R, open the software. The first window that appears is a nondescript window known as the
console, which is the gateway to R (see Figure 2.21). R code can be directly entered into the console, which
then is interpreted into machine language so that the CPU can perform the desired task. While entering
code directly into console can achieve a desired result, it is a short-lived victory as the code disappears into
the ether—it is not saved. It is best practice to write code into the script editor where it can be saved. The
script editor is a feature that is available in the toolbar above the console.

The R GUI (graphical user interface) is the bare bone basic designed for when R was strictly for math and
statistics. An Integrated Development Environment (IDE) known as RStudio can be installed to better
manage the data science workflow.

1While this screen capture is from a Mac computer, the layout is quite similar on a Windows machine.

https://www.r-project.org/
https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/

2.3. SETTING UP R AND RSTUDIO 9

Figure 2.2: The Base R console (left) and the script editor (right).

2.3.2 Installing RStudio
Using the basic windows in R can feel like driving a car with only a seat and a steering wheel—it lacks
the additional features to make driving a fully intuitive, integrated experience. RStudio adds an interactive
development environment that sits on top of R to make the programming process more comfortable and
intuitive. Note, however, that RStudio is not R.

One useful feature in RStudio is code highlighting, which helps the coder see which parts of the code contain
functions, variables, comments, among others. The highlighting also identifies when code is incomplete or
erroneously written which helps prevent bugs from entering the code. Another useful feature is how RStudio
handles graphics. If a piece of code outputs hundreds of graphs, R will render hundreds of separate windows.
RStudio, in contrast, will capture each of the windows produced by the script and place them into a gallery
of plots, thereby keeping the workflow as clean and manageable as possible. The number of productivity-
enhancing features continues to grow since the introduction of RStudio in 2011.

One key thing to remember: Since RStudio is an IDE, it requires R, but R does not require RStudio.

To install RStudio, follow these steps:
• Visit the RStudio website https://www.rstudio.com.
• Navigate to the Products > RStudio > RStudio Desktop > Download.
• In the Download section, select the Installer that corresponds to your computer’s operating system

(e.g., Windows 32-bit, Windows 64-bit, Linux or Mac, etc.).
• Open and follow the installation wizard.

If R has not yet been installed, make sure to do so before opening RStudio. During initialization, the program
will look for R and ask if the detected version is correct. Upon installing both programs, open RStudio by
clicking on its icon on your Computer.

When you open RStudio for the first time, the interface is laid out as four panes, as seen in Figure 2.3. Like
the basic R windows R, RStudio contains a script editor in which code can be written, edited, and saved to
disk. In addition to smart highlighting the different parts of a script such as functions and variable names,
the user can work on multiple scripts simultaneously.

All R code is executed in the console, including the code written in the script editor. The console pane is
also shared with the computer’s command line terminal, which is quite convenient for more complex projects
that require access to deeper functionality.

The environment pane provides an inventory of the data, functions, and other objects that are being used in
the current session of R. In some statistical analysis software like Stata, only one dataset can be managed

https://www.rstudio.com

10 CHAPTER 2. THE CASE FOR PROGRAMMING

Figure 2.3: A view of RStudio being used to write this chapter: the script editor (top left), environment
pane (top right), plots (bottom right), and console (bottom left).

at a time. As you can see, R allows for multiple data objects to be used at the same time, so as long there
is memory available. The environment tab also shares the pane with the History tab that keeps track of all
commands that have been executed in the current session. If there is a database (e.g., OBDC) or computing
framework (e.g., Spark) being used in the current session, the Connections tab makes the process relatively
painless.

Lastly, all graphs and figures are rendered in the plots pane. One of the nifty features of the plots pane is it
stores the history of the current session’s plots, making it easy to toggle and review a string of graphs. The
pane is also home to

• the Files tab that shows all files and folders in the current directory;
• the Packages tab from which one can install and manage code libraries;
• the Help tab that users can search coding reference materials; and
• the Viewer tab where interactive web-based visualizations are rendered.

For the most part, the layout of RStudio panes is fairly consistent with new tabs added and styling differences
from one version to the next.

2.3.3 DIY: Running your first code snippet
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch02-running-snippet.Rmd.

In this first DIY, let’s demystify the idea of running code. When writing code, it is important to make
sure the code is easily understood—your assumptions and logic are clear and produce the intended result.
This clarify ensures that a program that becomes relied upon in a policy process can be used by anyone.
The code snippet below involves two steps. The first step is to simulate a random normal distribution with
n = 10000 observations, storing the values in x. Then we plot that result as a histogram with 100 light blue

https://github.com/DataScienceForPublicPolicy/diys

2.4. MAKING THE CASE FOR OPEN-SOURCE SOFTWARE 11

Histogram of x

x

Fr
eq

ue
nc

y

−2 0 2

0
20

0
40

0

Figure 2.4: Histogram for a simulated normal distribution.

bins. The lines that begin with a hash contain comments that describe what will happen in the lines that
follow. Comments help the writers and readers of code to better understand the steps in a program. Copy
the code from “# Simulate 10,000...” through “hist(x...” and paste this into a new script in RStudio.

Simulate 10,000 values drawn from a normal distribution
x <- rnorm(10000)

Plot graph
hist(x, breaks = 100, col = "lightblue")

You can run this code snippet using one of two options:

1. The Run button: Highlight all lines, then click on the Run button at the top of the script editor.
2. Hot keys: Highlight all lines (Control + A), then press Control + Enter.

Both options send the highlighted code in a script to the console where it is interpreted (run), but the Hot
Key approach is far faster, removing the need for the mouse. The result should look similar to the histogram
in Figure 2.4.2 Granted, it is a simple example, but it is just the tip of a massive iceberg of data science
possibilities.

2.4 Making the case for open-source software
Most people who work with data rely on spreadsheet software such as Excel and Open Office to conduct
accounting and statistical tasks. For the better part of the desktop computing era, spreadsheets were all
that was needed to use data, and thus for many, the idea of writing code is quite daunting and seemingly
unnecessary. But to create the next generation of public services, as society grows larger and more complex,
we need to go beyond what has been the norm.

As a data scientist in the social and public sectors, you may need to persuade others that open-source
software is critical to your organization’s future. You will need to convince stakeholders why coding matters
and how it can be a force multiplier. We recommend focusing on what can be achieved through coding,
balanced with practical considerations such as cost, security, and customer support.

2The histogram will look similar but not exactly the same, as the n = 10000 observations are randomly drawn. In subsequent
chapters, we show a simple way to ensure that the same simulation can be replicated on any computer.

12 CHAPTER 2. THE CASE FOR PROGRAMMING

Enhanced Capabilities. While spreadsheet software can accommodate data up to approximately one mil-
lion records, its ability to be flexible and responsive is quite limited with larger datasets. Furthermore, it
lacks many of the basic tooling and algorithms used for sophisticated use cases such as risk management,
micro-targeting, interactive visualizations, among others. R, in contrast, can handle as much as data as
memory available on your computer. It also has thousands of libraries that are similar to plug-ins to vastly
expand its capabilities, ranging from applying artificial intelligence techniques to genetics to producing real-
time forecasts for stock markets. R does not replace spreadsheet software, but rather opens a new world of
possibilities to take organizations to the next level.

Cost. The cost of new software is often a concern for organizations with lean budgets. Fortunately, open-
source software such as R and Python are free to use and accessible by anyone. Since there is no cost barrier,
this pair of programming languages have been adopted by a large, vibrant global community of practitioners
and experts who contribute, maintain, and extend the functionality of the software.

Security. In an age of heightened cyberrisks, Chief Information Officers (CIOs) and Chief Information
Security Officers (CISOs) will need to be vigilant to safeguard their IT systems. Part of their security
strategy is to rely on software from trusted vendors who maintain their own proprietary software. This
strategy also implies that open-source code that is openly exposed and maintained has more cyberrisks.
Ironically, according to the NIST National Vulnerabilities Database that records all reported vulnerabilities
in software, there have not been any reported vulnerabilities with R, but many more for proprietary software.
Since a large community relies on and contributes to the software, there are far more people scrutinizing
the source code than just a single company’s development team. Indeed, it is a different model for viewing
software security, but as IT paradigms change, these open-source approaches offer new benefits that were
not previously possible through proprietary software alone.

Customer support. Like life insurance, some IT offices need peace of mind when buying a commercial
software—it comes with customer support if help is needed. Open-source software, in contrast, does not offer
customer support. Because it is a different paradigm of working, troubleshooting code has become much
simpler with online forums like Stack Overflow in which users post questions and a global audience offers
possible solutions. However, if worse comes to worse, there are a variety of enterprise-grade open-source
software available for R and Python. RStudio offers an enhanced commercial version of R with software sup-
port and companies like Continuum maintain special builds of Python that are enhanced and offer technical
support as well.

Human capital. An overlooked consideration is the human capital perspective. New generations of analysts
and programmers expect to use R and Python in their jobs. It is what is taught in university and it is what
they want to use to do their work. In some organizations, staff are unproductive and leave when forced to
use antiquated software without tooling to streamline their day-to-day tasks. Advocate for open source. At
the end of the day, work is about your team and the team must have the right tools in order to do the job
with pride and do it well.

Chapter 3

Elements of Programming

3.1 Data are everywhere
Data are everywhere we look. They are not necessarily numeric values stored in a spreadsheet but can be
embedded in everyday media, imagery, and text. Stock market performance, for example, is rarely com-
municated to the public in the form of a spreadsheet (perhaps to investors). Rather it is communicated in
the form of concise statements. Let’s take the example of a CNBC online article (Imbert 2017) about stock
market performance:

The Dow Jones industrial average erased earlier losses today to end 56.97 points higher at
21,865.37...

An investor or an economist can interpret a single statement and draw upon their past experience to make
sense of it. In a concise line, we can infer there is some volatility in a specific index but at the end of the
day, the market ended on a high note. Reviewing news articles and reports one at a time is effective in small
batches. But with high-frequency news cycles and continuous content generation, the volume of information
may be too much for any one person or group of people to analyze in a timely and accurate fashion.

Computers can help, but they need some guidance. Programmers exercise their creative fibers to layout rules
and procedures in the form of software. The software is comprised of, among other things, functions that
dictate how the computer should transform a raw piece of data using clearly defined procedures in order to
derive value from it. The data, however, needs to follow basic conventions. The functions within a program
are built with a certain data type in mind. Addition and subtraction functions only work if given a numeric
value. A function could also be built to review a sentence for useful information. For example, a simple
program could boil the CNBC article into a few morsels of information:

• The “Dow Jones industrial average” references the name of a specific stock market index. A function
could check if the name “Dow Jones” is in the sentence, then store the information.

• The values of “56.97” and “21,865.37” are numbers (with units). If given a pair of numbers, the function
could reason that the smaller of the two numbers is likely a change in index and the larger number is
the index volume.

• The direction of growth and volatility is embedded in the phrases “erased”, “earlier losses”, and “higher”.

Once information is extracted, the data are only useful if they are stored. Often times, data are assigned to
objects that are useful building blocks to structure, manipulate, and use the data. Then, the objects can be
stored to some type of file. These steps are some of the common tasks of programming—transforming data
into the right form.

Data structured from a sentence.
© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_3

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_3

14 CHAPTER 3. ELEMENTS OF PROGRAMMING

source market change volume date description

CNBC.com Dow Jones 56.97 21865 2017/08/29 erased, earlier losses, higher

Modern data science is only made possible through programming. It is through programming that computers
analyze satellite imagery or guess topics in textual information. As a first step toward algorithmic splendor,
this chapter presents fundamentals of programming with an eye toward data. We cover the basic skills that
allow data scientists to store data, manipulate different types of information, and load and executive code.1

3.2 Data types
In R, data are encoded (often implicitly) as one of several types of data, e.g., numeric, logical, character,
factor, or date. In this section, we describe the properties of each.

3.2.1 numeric
As you may have guessed, numeric data are numbers. The numeric type is R’s catch-all for all numbers,
encompassing both integer and continuous numbers. Below are four examples of numeric data in R.

4
56.4
4/9
pi

3.2.2 character
Words, sentences, letters, among other sequence of letters and numbers are often encoded as character
data (also known as strings) in datasets of linguistic text (e.g., court transcripts, novels, text messages, or
government audit reports). We R that a value is character by wrapping the value in quotation marks (e.g.,
"Text"). Both single quotes (’) and double quotes (") work.

"text"
"Text is fun!"
"Let’s have an example with an interior quotation mark."

3.2.3 logical
If we want to test whether something is true or false, then we have stumbled into the world of logic. Because
programming and data science frequently rely on logical data (or Booleans), they get their own data type.
In R, logical data are TRUE or FALSE, which can be abbreviated as T or F. As is always the case in R: the
letters’ cases matter, meaning you must use TRUE and cannot use true. Below are the only four values that
logical values can assume:

TRUE
T
FALSE
F

But how do we produce logical values? Often times, a relational operator is used to test whether a statement
is TRUE or FALSE. For instance:

Is 3 less than 4?
3 < 4

1An abridged, hands-on version of this chapter is available in the DIY repository. To follow along, download the
DIYs repository from Github (https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this DIY is
diy-ch03-basics.Rmd.

https://github.com/DataScienceForPublicPolicy/diys

3.2. DATA TYPES 15

Is 3 greater than 4?
3 > 4

Is 3 equal to 4?
3 == 4

In combination with a logical operator, we can evaluate two or more relational statements.
Is 3 less than 4 AND greater than 1?
(3 < 4) & (3 > 1)

Is 3 less than 4 OR greater than 1?
(3 < 4) | (3 > 1)

There are a variety of relational operators similar to the examples above. Logical operators will come in
handy for filtering and subsetting data in later chapters. Table 3.1 presents some of R’s most common logical
operators.

Table 3.1: Common relational and logical operators.

Operator Example Translation

> x > y x is greater than y.
< x < y x is less than y.
>= x >= y x is greater than or equal to y.
<= x <= y x is less than or equal to y.
== x == y x is equal to y.
& x > y & x > z Both x > y and x > z are true.
| x > y | x > z Either x > y or x > z are true.

These logical operators are particularly common for numeric data, but they can be used for any type of
data. For instance, if we execute each of these statements, we will notice that R is indeed case sensitive: “a”
is not the same as “A”, and, in fact, “a” precedes “A” in R’s ordering of letters. Numbers precede letters.
Is "A" equal to "a"? (Is ‘R‘ case sensitive?)
"A" == "a"

Is "a" less than "A"?
"a" < "A"

Is 3 less than "a"?
3 < "a"

Is numeric 3 equal to character 3?
3 == "3"

Finally, it is worth noting that you can transform TRUE and FALSE to binary numeric (1 and 0) by multiplying
them by the number 1. This is particularly useful for creating dummy variables quickly.

TRUE * 1
1 * FALSE

16 CHAPTER 3. ELEMENTS OF PROGRAMMING

3.2.4 factor
Factors are a special data type in R, because they allow you to take one type of variable (e.g., numeric or
character) and add a few more layers of information to make it interpretable. We can add labels to data so
that values “Sun” and “Mon” are labeled “Sunday” and “Monday”. Also, we have the option to indicate the
order of that data, meaning Sunday precedes Monday, etc. You can manipulate these labels, the ordering,
and a number of other factor options through the functions factor and as.factor.

In the age of big data, we may want to eliminate redundant information. Factors can help. For example, a
dataset containing 50 million people’s annual check-up covering 10-year period might have 500 million name
records—450 million of which are repeats. Factors can encode each name as a unique identifying number,
thereby removing the need to store redundant information and greatly reduces file sizes. The benefits of
factors are thus quite notable.

We will more fully explore factor data in the graphing section.

3.2.5 date
While there are many ways to think about dates—character data like “January” or numeric data like
1—dates are so common (and oddly challenging to work with) that they get their own type of data, namely,
the date type. We will dive more into working with dates in the next chapter.

3.2.6 The class function
Inferring the type of data by simply looking at the data can be misleading. The question of type is particularly
important when you read data into R from another source—we will not always know whether R read a variable
as numeric, character, logical, or perhaps factor. The class function works wonders.

A Quick aside on functions: This is the first time in this book that we officially use function. We will cover
functions in much greater depth throughout the book, but let’s first cover a few of the basics. Functions take
arguments (data that are fed or passed to a function) and produce output. For example, the class function
takes one argument like the number 56.97 and outputs a character that describes the class of whatever
argument we inputted into the function—“numeric” in our case. Functions help us complete tasks and
analyses that may be too difficult or time-consuming to code by ourselves. Functions also excel at repetitive
tasks—you can easily tell R to do something a million times so you do not have to copy and paste a million
times. You can also write your own functions in R—but that will come later.

Let’s see this class function in action.

Numeric
class(56.97)
class(57)
class(57L)
class(1/3)

Character
Class("Dow Jones")

Logical
class(TRUE)
class(F)
class(3 > 2)
class(1 * TRUE)

Factor
class(factor(3))

3.3. OBJECTS IN R 17

Date
Sys.Date()
class(Sys.Date())
as.Date("2015-12-31")
class(as.Date("2015-12-31"))

Fun
class(class)

One more note on functions: Many functions in R can take many arguments, and sometimes arguments are
optional. To keep track of which values you are assigning to which arguments, it is often best to use the
argument’s name. In the class examples that we just covered, we implicitly assigned the various values that
we fed to class to its sole argument x. We could have also used the argument’s name.
Without the argument’s name
class(TRUE)

With the argument’s name
class(x = TRUE)

Both options produce the same output, but the second example—in which we explicitly use the argument’s
name—makes it a bit clearer what we are doing. We admit it does not truly matter for class, since there
is only the possibility of one argument. However, we will soon meet some functions where explicitly naming
arguments helps you and your collaborators.

3.3 Objects in R
Simply entering data into R’s console is not enough. The console runs commands blindly, but the output
evaporates into the digital ether as it is not automatically captured. We need a way to store data in our
computer’s memory. To be able to access and re-access the data that we store, we give each piece of data a
name. In R parlance, we assign the values (the data) to objects stored in memory (the names).

R’s assignment operator <- exists solely for the task: assigning a value (on the right-hand side) to the name
(on the left-hand side). If you are reading code aloud,2 object <- value is typically read “object gets value”.

a <- 3
string_ex <- "Some funny/clever words."
some.logic <- TRUE

As you can see, we have a freedom in the names that can be used for the objects. However, we can mitigate
the heartache of troubleshooting erroneous code by using common variable name conventions. Variable names
should avoid (1) a number as the first character in the name (e.g., “1variable” is not a good idea) as this
will not register as an object, (2) any spaces in the name (e.g., “variable 1”), (3) a name of an existing
function.

Once we assign a value to an object, we can access that object’s value and perform operations on that value.
For instance, we can assign a value of three to object a, as above, and then we can (1) check the value held
in a by executing a in the console, (2) check the class of a, and (3) multiply a by 3:
Assign value 3 to object named ’a’
a <- 3

(1) Check a’s value
a

2Yes, it does happen.

18 CHAPTER 3. ELEMENTS OF PROGRAMMING

(2) Check a’s class
class(a)

(3) Multiply a by 3
a * 3

3.4 R’s object classes
Just as data in R come in different types, objects in R come in different classes, e.g., a vector, a matrix, a
data.frame, or a list. Each of the object classes presents data in a slightly different structure, making it
better for some uses and worse for others. Here, we review four of the most common data structures now
and will discuss others as they arise throughout the book.

3.4.1 vector
vector objects are one of the simplest and most used classes of objects in R. Specifically, (in R) a vector is a
one-dimensional “list” of values. The values in a vector can be logical, numeric, factor, or character,
but they must all be of the same type. If the objects are not all of the same type, R will coerce them to the
most conducive type.

The simplest way to create a vector is with the concatenate function: c. To create a vector of values, you
feed the c function your values, each separated by a comma (,). For instance, to make a vector out of the
numbers 1, 2, and 3, we write c(1, 2, 3). And to create a vector of the characters “apple” and “banana”,
we write c(“apple”, “banana”).
Vector of numbers
c(1, 2, 3)

Vector of characters
c("apple", "banana")

So what happens when we create a vector of a number and a character?
Mixed vector
c(1, "banana")

R coerces everything to character. This result may not be what you expected—you may have expected R to
allow a vector to contain objects of different types. At some point, the folks who developed R made this
decision—and millions of other little decisions—that led to the current implementation of R. As you get
deeper into R, you will find that there is a logic to these decisions (e.g., why R tells you it is TRUE that “apple
pie” < “banana cream pie”), but R will still occasionally surprise you. And that is part of learning to
program in R. So don’t be afraid to dive into the rabbit holes that surprise you. You may lose a few hours
in the short run, but in the long run you’ll become an excellent data scientist.3

3.4.2 matrix
The next class of objects is R’s matrix class. In R, matrices are very similar to the matrices taught in
mathematics courses: they have rows and columns filled with data. However, in addition to filling your
matrices with numbers, as you did in your math courses, in R you can also fill your matrix with other types
of data—e.g., logical, character, factor—just as you can with vectors.

You generally will need to feed two arguments to R’s matrix function:

1. The data that you want placed into your matrix, as a vector.

3And R Wizard.

3.4. R’S OBJECT CLASSES 19

2. The number of rows (nrow) in your matrix.

For example, let’s imagine we want a matrix with 2 rows and 3 columns that contains the integers one
through six. Then we need to feed matrix (1) a vector containing the integers one through six, and (2) nrow
= 2, telling R we want two rows.

Aside on creating numeric sequences: As we covered before, you can easily create short numeric vectors using
the c function, e.g., c(1, 2, 3). But this construction quickly gets tedious for longer vectors—even creating
a vector of the integers between 1 and 100 would be a nightmare with only the c function. Lucky for us, R’s
makers included a quick and easy fix: a:b generates a numeric vector containing the integers from a to b
(inclusive of a and b). For example, 1:100 will create a vector with the integers 1 to 100.4

Old school
c(1, 2, 3, 4, 5, 6)

New school
1:6

Using our new sequence knowledge, we can create our 2 × 3 matrix with the integers one through six5.
matrix(data = 1:6, nrow = 2)

And there we have it. Notice that because the matrix function takes two arguments, we explicitly named the
arguments6 and we separated the two arguments’ assignments with a comma. Also notice that by default, R
filled the matrix by its columns (top to bottom and then left to right). If you would rather fill your matrix
by its rows, you can add the optional argument byrow = TRUE to the matrix function:

matrix(data = 1:6, nrow = 2, byrow = TRUE)

As we mentioned earlier, you can create matrices filled with essentially any type of data.
Character
matrix(data = c("Six", "words", "can", "be", "a", "lot."), ncol = 3, byrow = T)

Logical
matrix(data = c(T, T, F, F, F, T), ncol = 3)

Finally, notice that you can force R to fill in a matrix by specifying both the number of rows (nrow) and the
number of columns (ncol) for a matrix.

matrix(data = 1, nrow = 3, ncol = 2)

3.4.3 data.frame
As a budding data scientist, one day you will wake up and find yourself surrounded by data.frames. The
data.frame is the basic object for data entry and analysis in R—much like a table of data or a spreadsheet,
but better. Just like a matrix, a data.frame has rows and columns. Unlike a matrix, a data.frame can
have different types of data in each of its columns. In addition, you will name each of the columns in your
data.frame. In general, you define a data.frame using the following conventions:
data.frame(

column1 = values...,
column2 = values...,
...
columnN = values

)

4For more complicated tasks, there’s also the sequence function seq, which takes the starting value for the sequence (from),
the stopping value for the sequence (to), and the distance between each of the items in the sequence (by).

5Two rows and three columns.
6Not necessary but highly helpful.

20 CHAPTER 3. ELEMENTS OF PROGRAMMING

More concretely, let’s create a two-column data.frame. The first column will be called some_letters and
will contain... some letters. The second column with be called some_numbers...

data.frame(
some_letters = c("a", "A", "b", "B"),
some_numbers = 1:4

)

One of the main requirements for a data.frame is that R needs to be able to fill each of the data.frame’s
columns. In practice, this requirement means one of two things:

1. The values you specify for each column have the same number of elements (as they do above).

2. The numbers of elements you specify for each column are multiples of each other.

For an example of the second option:
data.frame(

some_letters = c("a", "A", "b", "B"),
some_numbers = 1:2

)

R repeats the shorter vector (the second column in this example) until the two columns are the same length.
If the numbers of elements are not multiples (e.g., 4 and 3), R will refuse to construct the data.frame, and
you will get an error. For example,

data.frame(
some_letters = c("a", "A", "b", "B"),
some_numbers = 1:3

)

Error in data.frame(some_letters = c("a", "A", "b", "B"), some_numbers = 1:3) :
arguments imply differing number of rows: 4, 3

Notice that R’s error message gives us a hint to what the problem is: arguments imply differing number
of rows: 4, 3. Generally, error messages in R will contain a hint of the problem, but it takes some experience
to understand what R is really trying to say (e.g., here we need to know the rules about column lengths in a
data.frame). As a result, error messages can seem a bit cryptic while you are in the early stages of learning
R.

Aside: In the data.frame examples above, we wrote data.frame(and then went to the next line to define
the columns. R does not stop at the end of the line, because it “knows” that the data.frame definition is
unfinished. You don’t have to define a data.frame over multiple lines7, but using multiple lines tends to
make your code more legible and easier to troubleshoot.8

3.4.4 list
R’s list class of objects is exactly what its name implies—it is a list of things. Similar to the vector, a
list has only one dimension—its length. Unlike the vector, a list can contain objects of many different
types. The most incredible feature of list is its elements can be anything—it is remarkably flexible. We
are not resigned to simple objects and formats like 1 or T or “Some text”. A single list can have vectors,
data.frames, and even other lists as its elements.

The conventions for creating a list mirror what we’ve discussed so far—especially with the vector-creating
c function: Simply pass the objects of interest to the list as the arguments in the list function:

list(
"apples",

7You can do it in one line: data.frame(some_letters = c("a", "A", "b", "B"), some_numbers = 1:3).
8In longer code examples in later chapters, we condense the code layout.

3.4. R’S OBJECT CLASSES 21

c(T, F, T),
matrix(data = 1:4, nrow = 2),
data.frame(var1 = 9:10, var2 = 11:12)

)

Here we have a (very mixed) four-element list with individual elements:

1. a one-element character vector,

2. a three-element logical vector,

3. a 2 × 2 matrix, and

4. a two-variable data.frame.

As with most objects in R—as we have just illustrated with the columns of the data.frame—each individual
element of the list can be named. Let’s re-create the list, naming its elements with original, creative names.

list(
el_1 = "apples",
el_2 = c(T, F, T),
el_3 = matrix(data = 1:4, nrow = 2),
el_4 = data.frame(var1 = 9:10, var2 = 11:12)

)

For complex programming projects, lists are indeed the workhorse of efficient processing.

3.4.5 The class function, v2
Previously we used the class function to learn the data types of various objects (e.g., class(3.1415)). The
class function can also be used to learn about an object’s class. For example,
Check the class of a matrix
class(matrix(data = 1:4, nrow = 2))

[1] "matrix" "array"
Check the class of a data.frame
class(data.frame(a = 1:3, b = 1:6))

[1] "data.frame"
Check the class of a list
class(list(a = 1:3, b = 1:6))

[1] "list"

However, if we check the class of a vector, R will not indicate it is a “vector”. Rather, R will return the
type of vector it is—numeric, logical, character, etc.
Numeric vector class
class(c(1, 2, 3))

[1] "numeric"
Character vector class
class(c("a", "b", "c"))

[1] "character"
Logical vector class
class(c(T, F, T))

[1] "logical"

22 CHAPTER 3. ELEMENTS OF PROGRAMMING

Coercion to character
class(c(T, 3, "Hi"))

[1] "character"

The takeaway? R “thinks” about different types of vectors as different classes of objects.

In addition, each object class also has its own function to check whether an object belongs to the class. For
example, is.matrix can check whether an object is a matrix. Type “is.” into the RStudio console and hit
the tab key—you will get a glimpse of all of these is.* class functions.

3.4.6 More classes
R makes use of many other object classes. Many of the object classes are specific to an application (e.g.,
geographic data like rasters or shapefile) or packages (e.g., when you run a regression with the function lm,
the function produces a special lm object).

3.5 Packages
3.5.1 Base R and the need to extend functionality
R is furnished with a large set of core functions. You can perform mathematical operations (addition +,
division /), conduct statistical summaries (mean, sd), run a regression (e.g., lm), plot a histogram (hist),
and even make a map (plot). This original set of functions that shipped with R is called base R—the basic
setup when you open the box. One will eventually find themselves in a situation that requires more complex
and specialized functionality that is not possible by any function in base R.

Some users have the adventurous itch to program specialized functions, which may sound daunting. But
fear not, there is a whole universe of functions awaiting your use on the Comprehensive R Archive Network
(CRAN), as well as on Github. Specifically, functions are available as families of functions, formally called
packages.

For example, imagine that a colleague sends you an Excel spreadsheet that you then need to load into R.
Herein lies a common problem: base R does not have a function to read directly from a spreadsheet. But, as
its name implies the readxl package on CRAN provides exactly the functionality you need.

3.5.2 Installing packages
A large community of R users and developers contribute and maintain a vast archive of packages.9 These
packages span computationally intensive tasks like reading satellite imagery to more visual tasks like creating
interactive maps for websites. It is easy to tap into these vast resources, and to get started with a package
like readxl, we only need two inputs: (1) an internet connection and (2) R’s install.packages function.
We can install the readxl package by executing the following line in the R console. To break it down, the
install.packages function requires the name of a known package on CRAN in the form of a string value.

install.packages("readxl")

For some packages, R will also install package dependencies—other packages on which the requested package
relies. This is one of the beautiful things about R: it is an extensible language that builds on existing
functionality. Entire families of packages are dependent on common functions, ensuring that a common logic
is employed in making the magic happen.

There are sources (e.g., METACRAN) that allow you to search CRAN for packages, but, as with many
R-related tasks, Google and asking friends and colleagues are going to be your best bets.

9Visit CRAN for a full list https://cran.r-project.org/web/packages/available_packages_by_name.html.

https://cran.r-project.org/
https://github.com/
https://www.r-pkg.org/
https://cran.r-project.org/web/packages/available_packages_by_name.html

3.5. PACKAGES 23

3.5.3 Loading packages
Like installing a new air conditioning unit, the unit is only useful when it is plugged in and turned on. R
packages follow the same logic. Installing a package simply means that you now have access to the package
on your machine. To take advantage of the functionality, packages need to be loaded into the R environment
during each session.

To load a package, use the library function in combination with the package’s name. Note that whereas
install.packages expects the package name in string format, the library function can accommodate both
strings (e.g., “readxl”) or the package as a name (e.g., readxl) as it is now an installed resource.

library(readxl)

The library function will only load one package at a time, meaning that every package will need to be
called individually. If we needed to load two installed packages—readxl and a package for text manipulation
known as tidytext—we would need to do the following:

library(readxl)
library(tidytext)

For highly complex projects requiring many packages, this can be cumbersome. In the next section, we
present a solution to this problem.

When a package is loaded, it is only temporarily held in the computer’s memory. Whenever R and RStudio
are closed or restarted, all loaded packages are removed from memory. The point: you will need to load the
packages again, but you do not need to install them again.

3.5.4 Package management and pacman
While installing, loading, and updating packages in R is fairly quick and easy, the pacman package further
streamlines and simplifies these process (and many related processes). What if we needed to load these three
packages? The manual option requires one to embrace the tedium:

library(readxl)
library(tidytext)
library(ggplot2)
...

And the tedium does not end on your computer. When the code is shared with a collaborator, they may not
have all of the packages installed, meaning the script will crash, requiring them to backtrack through the
error log and install all of the missing packages. This scenario happens all too often, but it need not be the
case.

Meet: pacman.

Upon installing pacman, the mental overhead of keeping track of all packages is quickly minimized:
library(pacman)
p_load(readxl, tidytext, ggplot2)

The p_load function within the pacman package makes package management easy. Not only does p_load
install requested but missing packages, it loads them. We can also directly call the p_load function using
the double colon “::” operator, which is shorthand for calling a specific function in a package.

pacman::p_load(readxl, tidytext, ggplot2)

Including this line of code at the top of each R script only requires collaborators to have pacman installed
and the package does all of the heavy lifting of keeping packages up-to-date and in sync.

Commonly used packages. There are thousands of packages available in R—the language is truly exten-
sible. But one thing to note is that not all packages are of the same high quality—some are relatively new

24 CHAPTER 3. ELEMENTS OF PROGRAMMING

Table 3.2: Recommended packages.

Package Description

haven Read Excel files.
readr Read multiple types of standard files such as CSV.
readxl Read Excel files.
rjson Read JSON files
XML Read XML files.
data.table Extension of data frames for fast data processing.
dplyr Tools for efficiently manipulating data.
lubridate Date manipulation tools.
reshape2 Simple functions for fast data reshaping.
stringr String manipulation functions.
tidyr Basic tools to “tidy” one’s data.
fastlink Probabilistic record linkage tools.
openssl Toolkit for encryption.
ggplot2 Data visualization suite.
gridExtra Utilities to layout sets of graphs.
glmnet Elastic net, LASSO, and Ridge regressions.
hdm Regularized regressions for causal inference.
caret Model building tools for classification and regression.
e1071 Support vector machines.
kknn K-nearest neighbors.
ranger Fast implementation of the Random Forest algorithm
rpart Classification and Regression Trees (CART) algorithm.
rpart.plot Visualization tools for CART models.
cluster Tools for clustering data.
dendextend Tools for visualizing dendrograms.
sf Spatial data processing tools.
tidytext Text mining tools.

and still have their fair share of bugs. We recommend the following 27 packages that have largely proved
tried and true. Using pacman, install these packages, as they will re-appear again and again throughout this
book (Table 3.2).

3.6 Data input/output
When Captain Jean Luc Picard says “Make it so, Number Two”, he is giving the order to execute a command
that he specified prior to his statement. All the necessary information needed by the starship’s crew to act
is embedded in that order, ensuring that a precise output is delivered according to Picard’s input. Our
interaction with computers is no different. Computer programs cannot guess what we intend to do—not yet.
Computers are designed to interact and respond to humans given specific rules and protocols, and importing
data is no different. This is the fundamental idea that underlies data Input/Output or I/O.

Suppose you need to analyze an Excel file of stock market data. In order to load data, we need three pieces
of information: (1) where to look for a file (directory), (2) how to load the file (function), and (3) the name
of file (file).

3.6.1 Directories
R can import any kind of file, but it first needs to know where to look. Directory paths are a special kind
of string that dictate how R should traverse folders on your computer to get to a file. Suppose the Marvel

3.6. DATA INPUT/OUTPUT 25

superhero Black Panther wanted to pull fuel cost data for his jet vehicle that is stored in a directory on an
Apple computer. The path may look something like /Users/BlackPanther/Tech_and_Travel/Bills/. On
a Windows machine, the path may look like C:\\Users\\BlackPanther\\Tech_and_Travel\\Bills\\.

In order to open files in these directories, R expects the paths to follow a specific format. Each subfolder in
a directory path is denoted with a forward slash. Back slashes can be used, but only on Windows machines.
Furthermore, there must be two backslashes for every slash. Table 3.3 illustrates valid and invalid directory
paths. Note that the erroneous path that begins with \Users conflates the combination \U with special
characters rather than as strings representing paths.10

While it might not seem to matter, we recommend one additional best practice: avoid adding spaces to
paths like Black Panther. Spaces can be challenging to work with in some programming languages, whereas
underscores (_) and hyphens (-) are reasonable substitutes. Keep this best practice in mind when creating
new folders.

Table 3.3: Examples of valid and invalid directory paths.

Path About

\Users\BlackPanther\Tech and Travel\Bills\ Erroneous path
/Users/Black Panther/Tech and Travel/Bills/ Acceptable path on Mac but

could be better
/Users/Black_Panther/Tech_and_Travel/Bills/ Acceptable path on Mac and

Windows Machines
C:\\Users\\BlackPanther\\Tech_and_Travel\\Bills\\ Acceptable path in Windows

Let’s now put paths to work, as shown in the code block below. R is always “pointed” at a directory, but
which one is it? The getwd function will retrieve the path of the working directory (or WD) and print it
to console. But what if that directory is not the right one? Perhaps the data are in a different folder. We
can pass a directory path to the setwd function to “set the working directory”. And as a final check, does
the directory contain the files of interest? Using dir, R will return a list of files and folders in the current
directory.
Check path
getwd()

Set directory path
main_dir <- "your-path-goes-here"
setwd(main_dir)

Get list of files in current directory
dir()

A few best practices. The setwd should only be called once and only once, and it is a standard practice to set
your directory at the top of your script. This keeps the code clean and flexible, forcing all data processing
steps to adhere to a defined folder structure. But this also has practical implications for how folders are set
up. All files required for a project should be well organized in the same folder, even if it means using multiple
subfolders.

This may seem like a draconian set of practices, but there are reasons for the madness. Suppose you need to
move a code project from your desktop computer to a server directory, which requires every single setwd to
be updated. As you might imagine, updating the directory path in one command at the top of the script is
faster and more accurate than updating it in 100 lines of code. Setting the working directory to the top level

10The use of these special characters is covered in Chapter 4.

26 CHAPTER 3. ELEMENTS OF PROGRAMMING

of a project folder also allows you to take advantage of relative paths—calling on subfolders of the working
directory.

3.6.2 Load functions
How exactly do we load a dataset into R? The answer depends on where the data file is located (the path)
and the data storage format. It turns out there are hundreds of storage formats, but there are a few that are
commonly used in the public sector, namely, Comma Separated Values (csv), JavaScript Object Notation
(json), Excel (xls, xlsx), Extensible Markup Language (xml), and Text (txt).11 For each format, there is
a specific function or set of functions that load the data into the R environment.

For example, to open csv files “fuel_bills.csv”, “electricity_bills.csv”, and “insurance_bills.csv”
located in directory “/Users/Black Panther/Tech and Travel/Bills/”, we can use the read.csv function
(Base R)12. The simplest approach is to concatenate the directory and file name into one string and pass it
to load function, which then assigns the data to a data frame bills.
Read with directory path and file in one string
fuel_bills <- read.csv("/Users/Black Panther/Tech and Travel/Bills/fuel_bills.csv")
elec_bills <- read.csv("/Users/Black Panther/Tech and Travel/Bills/electricity_bills.csv")
ins_bills <- read.csv("/Users/Black Panther/Tech and Travel/Bills/insurance_bills.csv")

The first approach, while straight forward, is not transferrable. If the Black Panther shares his Tech and
Travel folder with Tony Stark, the load function will not be able to find the csv files as the path will likely
be different. Then, Mr. Stark would need to manually change the paths for each bill file—not an efficient use
of superhero time. Instead, consider the approach below that requires the user to change only the path for
the top-level directory, which then is set as master directory. Each file in the Bills folder is located using a
relative path.

We cover the nuances of importing files in more detail in Chapter 4.
CHANGE master path
path <- "/Users/Tony/Tech and Travel/"

Set working directory
setwd(path)

Import
fuel_bills <- read.csv("Bills/fuel_bills.csv")
elec_bills <- read.csv("Bills/electricity_bills.csv")
ins_bills <- read.csv("Bills/insurance_bills.csv")

3.6.3 Datasets
As you may recall from Chap. 1, we have made available a number of datasets through a Github repository.13
Let’s set up the data folder so you can access the data.

In the code chunk below, modify the directory in setwd to a path on your computer. By executing the
download and unzip steps, R will save a copy of the data-sets repository from Github and unzip it into the
directory of your choice. The new folder will be labeled data-sets-master.
Set directory (modify this string)
setwd("//directory/of/your/choice")

11There are other formats that are more subject area specific such as NetCDF (nd) for earth science, but to keep the list
concise, we focus on the ones listed in the text.

12For more efficient data import of large datasets, consider the read_csv function in the readr package.
13Visit https://github.com/DataScienceForPublicPolicy/data-sets.

https://github.com/DataScienceForPublicPolicy/data-sets

3.7. FINDING HELP 27

Download repository
link <- "https://github.com/DataScienceForPublicPolicy/data-sets/archive/master.zip"
download.file(url = link,destfile = "dspp.zip")

Unzip file
unzip(zipfile = "dspp.zip")

The data folder in data-sets-master contains all datasets that have been assembled in this book.

3.7 Finding help
3.7.1 Help function
Developers interested in driving adoption of their packages understand that ease of use and clear documen-
tation win the day. Thus, each R function is equipped with documentation to illustrate its syntax and use.
As a first line of support, you can access any function’s help file using ?<function_name> in the console,
provided that the package has been loaded.

For instance, suppose you are interested in importing a spreadsheet using the read_xlsx from the readxl
package, but you would like to have a better understanding on how to use it. Assuming that readxl has
been loaded, simply execute the following in the console ?read_xlsx. If the package has not already been
loaded, include the package’s name, double colons (::), and the function’s name, e.g., ?readxl::read_xlsx.
Recall that the double colon trick essentially is short hand for obtaining a specific function from a library
without importing the entire library.

3.7.2 Google and online communities
One of the best aspects of R is the vibrant and (generally) helpful online community. By simply searching
“R ”, you will likely discover that you are not the first to face the challenge at hand. To illustrate the point:

• Leading zeros often are required to convert a number to a certain format. One of the zipcodes for
Somerville, MA is 02144, which sometimes is erroneously converted into a number 2144. To find a
solution to this formatting issue, simply search “R leading zeros”.

• JSON or JavaScript Object Notation is a data format that is increasingly used for web data. It requires
a package to read and import. Search “R import JSON” to find a solution.

It quickly becomes apparent that Stack Overflow is the premier resource for programming and Cross Validated
for statistics and machine learning. More often than not, these online communities will have an answer and
R coders hunting for an answer will copy and paste code without checking what it does. User beware, the
answer might not be to your question, may not be the most efficient solution, or could be wrong. Nonetheless,
these online resources are a great starting point.

3.8 Beyond this chapter
3.8.1 Best practices
As you may have noticed, many of the code snippets in this chapter contained comments preceded by a
hash (#).14 The hash tells R to ignore whatever follows the hash on the same line as the #. Thus, the hash
allows you to make notes—or comments—to yourself, your collaborators, or anyone else who may have to
read through your code. These comments document what was the thought process behind the code so that
you or anyone else can read and understand the R script. For example:

14Also called a pound sign or number sign or octothorpe in the olden days before Twitter.

https://stackoverflow.com/
https://stats.stackexchange.com/

28 CHAPTER 3. ELEMENTS OF PROGRAMMING

Make sure the packages are installed and loaded.
p_load(readxl, dplyr)

Navigate to the data directory to load the data.
setwd("/Users/Someone/OnlyData")

Load the xlsx file (named ’fake_data.xlsx’)
fake_df <- read_xlsx("fake_data.xlsx")

In the example above, each comment concisely describes what the code will do in the next line and why we
want to do it. Often the why is the most important part: with some experience, you will be able to figure
out what each line of an R script does, but it is much more difficult to figure out why the author wrote the
641 lines of code in the middle of a 1200-line R script.

Another popular use of comments in R—and in many other languages—is to flag questions, issues, or unfin-
ished items. The idea here is to start the comment with a quick flag, for instance, # TODO. This flag helps
you find the unfinished parts of your document—or the parts that you want your collaborators to finish for
you. For instance, we might start a document
Make sure the packages are installed and loaded
FIXME: There are better packages for large datasets.
p_load(readxl, dplyr)

Navigate to the data directory to load the data
setwd("/Users/Someone/OnlyData")

Load the xlsx file (named ’fake_data.xlsx’)
fake_df <- read_xlsx("fake_data.xlsx")

TODO: Clean the dataset. Check out ‘stringr‘ and ‘data.table‘

You can also use commenting (#) to tell R to ignore lines of code. This usage of the hash is called commenting
out your code, as it allows you to turn off a line of code, e.g.,
Standard line of code
two_plus_two <- 2 + 2

Commented out line of code
Two_times_two <- 2 * 2

In general, commenting lines of code out is most helpful for temporary changes and/or testing code. If you
really do not need a line, just delete it. It is worth saying that the style and amount of commenting, flagging,
and commenting-out are highly subjective. If you find them burdensome, then you probably should cut back
a bit or try a different strategy. That said, it’s pretty rare for 0 comments to be an optimal number of
comments in an R script.

3.8.2 Further study
In-depth coverage of R. The ecosystem of educational materials for programming has significantly evolved
and matured in recent memory. For a more in-depth text on programming in R for absolute beginners, consider
reading The Art of R Programming: A Tour of Statistical Software Design by Norman Matloff, which covers
data structures, mathematical simulations, and many other topics. We do recognize that some readers are
transitioning from other social science software. A Rosetta Stone can be helpful to facilitate the transition:

• R for Stata Users by Joseph M. Hilbe and Robert A. Muenchen.

• R for SAS and SPSS Users by Robert A. Muenchen.

• R for Excel Users: An Introduction to R for Excel Analysts by John L Taveras.

3.9. DIY: LOADING SOLAR ENERGY DATA FROM THE WEB 29

Programming requires one to build muscle memory—there is no better way of learning than doing. The
swirl package (install by executing pacman::p_load(swirl)) is a free interactive environment that teaches
R programming through in-console exercises. Our students from previous data science courses have relied on
this package to build up their core skills with great success. For more information, visit: https://swirlstats.
com.

Beyond R. Aspiring data scientists will no doubt encounter many programming languages throughout their
career in the field. While one could start with R, she will eventually encounter Python—another core data
science language. A basic command of this ubiquitous language will prove useful for adapting to different
tech stacks and requirements. But why learn more than one language?

Teams tend to be more efficient when using a common language, removing the need to code switch. New
joiners to the team may need to conform to the team’s standard language. In addition, the use cases differ
between languages. While R is more than sufficient for analysis and small to medium-scale data applica-
tions, Python is well suited for building scalable software projects that have a more demanding technology
requirement. As developing software in Python follows different workflows and development paradigms, we
recommend building Python skills from the ground up using Learn Python The Hard Way by Zed A. Shaw.
Originally a web book, the content has since evolved to include written content and videos to walk through
how Python works.

While some data can be stored in files in a folder (e.g., CSVs, JSONs, Excel), some data is too large and
too complex to sit in a single file. Instead, data is stored on a relational database. Being able to query a
database—or extract data from a data storage system—is among the most foundational skills required of
data scientists or data analysts. Structured Query Language (SQL) is a universal standard for interacting
with relational databases. For a gentle introduction, we recommend Practical SQL: A Beginner’s Guide to
Storytelling with Data by Anthony DeBarros, which walks through how to create a database, use “Create-
Read-Update and Delete” (CRUD) operations, and basic analysis using SQL.

3.9 DIY: Loading solar energy data from the web
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch03-load-data.Rmd.

For this DIY, we will import and examine data about solar energy—a natural resource that is playing an
increasingly important role in fulfilling energy demand. In the period between 2008 and 2017, annual net
generation of solar energy produced by utility-scale facilities had grown by 61.3 times, from 864 thousand
megawatt hours to 52,958 thousand megawatt hours (Energy Information Administration 2019). At the same
time, solar also became more economical: photovoltaic module costs fell from $3.37/peak watt to $0.48/peak
watt—an 86% reduction in cost.

The increased affordability of solar, among other advanced technologies, opens the possibility for constructing
buildings that are hyper energy efficient. For example, the Net Zero Energy Residential Test Facility is a
house that produces as much energy as it uses over the course of a year. Engineered and constructed by the
National Institute of Standards and Technology (NIST) in Gaithersburg, MD, the lab home was designed to
be approximately 60 percent more energy efficient than typical homes. In order to achieve net zero energy,
the lab home needs to produce an energy surplus and overcome the energy consumption of a simulated
family of four. In fact, within its first year, the facility produced an energy surplus that is enough to power
an electric car for 1400 miles (National Institute of Standards and Technology 2016).

The test bed also generates an extraordinary amount of data that help engineers study how to make more
energy-efficient homes and may one day inform building standards and policies. We tap into one slice of the
net zero house’s photovoltaic time series data, which is made available publicly at https://s3.amazonaws.com/
nist-netzero/2015-data-files/PV-hour.csv. This dataset contains hourly estimates of solar energy production
and exposure on the Net Zero home’s solar panels.

https://swirlstats.com
https://swirlstats.com
https://github.com/DataScienceForPublicPolicy/diys
https://s3.amazonaws.com/nist-netzero/2015-data-files/PV-hour.csv
https://s3.amazonaws.com/nist-netzero/2015-data-files/PV-hour.csv

30 CHAPTER 3. ELEMENTS OF PROGRAMMING

Suppose we would like to know how much energy is produced from the solar arrays and how variable is
that energy production over the course of a year. If information on solar energy production is known for the
Net Zero home, decision makers and home owners can decide if investing in solar would be cost-effective.15
With only a few lines of code, we can import and summarize the information. To start, we load the pacman
package and use p_load to load the readr package.
Load libraries
pacman::p_load(readr)

With the basic functions loaded, read_csv is used to import a comma separated values (CSV) file stored at
the given url, which is then loaded into memory as a data frame labeled solar. Notice that the path to the
data file is not on your computer. R is able to directly download and read files from the internet.

Once the data are loaded, we check the dimensions of the data frame using dim: it has n = 8,737 with 32
columns. As we are primarily interested in the total amount of sunlight shining on the solar arrays at any
given hour (kWh), we focus in on the variable PV_PVInsolationHArray in data frame solar and review the
first five observations.
Check dimensions
dim(solar)

[1] 8760 32
Extract solar array variable
solar_array <-
solar$PV_PVInsolationHArray

Retrieve 5 observations from top of dataset
head(solar_array, 5)

[1] 0.05740833 0.06028630 0.05881078 0.05886550 0.05928754

To answer our questions, we can obtain a concise summary to gage the hourly variability. The photovoltaic
arrays are exposed to fairly small amounts of energy for the majority of hours, as indicated by the small
median relative to the mean, but there are occasional periods with intense energy exposure.

summary(solar_array)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.05585 0.33865 9.45263 14.84311 54.84352

This can be more concisely summarized as the coefficient of variation (CV = standard deviation
mean)—the ratio of

the standard deviation and the mean. Values of the CV that exceed CV = 1 indicate greater dispersion. We
compute the mean and standard deviation sd. The resulting CV indicates that one standard deviation is 1.5
times as wide as the mean, suggesting that the hourly solar energy generation can be quite variable.
Calculate mean
a <- mean(solar_array)

Calculate standard deviation
b <- sd(solar_array)

Calculate coefficient of variation
b / a

[1] 1.537536

15There are a many factors that should inform these decisions. Here, we aim to illustrate the basics of loading and extracting
insight from scientific data.

3.9. DIY: LOADING SOLAR ENERGY DATA FROM THE WEB 31

With only a few lines of code, we have shown how programming can make data analysis an efficient process.
In the context of policy, programming removes the tedium of manually working with spreadsheets, allowing
an analysis to be delivered using only a few decisive keystrokes.

Chapter 4

Transforming Data

Data processing can occupy between 50% and 80% of a data scientist’s time (Lohr 2014), yet this formative
step in a data science project is overshadowed by the end product. More often than not, stakeholders will
request data and expect it to be delivered quickly and effortlessly without realizing the substantial effort
that is put into producing a useful dataset.

Processing raw data into analysis-ready form involves a set of techniques and transformations. The specific
steps, however, are dependent on the subject area and use case. The US GDP, for example, involves hundreds
of economists and statisticians. Data are downloaded from published survey data and administrative records,
inspected for outliers and missing values, joined together, reshaped into a useful form, then used as inputs
for estimating the state of the economy. Satellite imagery collected by NASA and NOAA are downloaded in
batches of “granules” that need to be rectified, stitched together, and otherwise processed into a ready-for-use
imagery. In short, there is always substantial data processing behind any published dataset. We tend to only
see the end product and not the underlying machinery.

Where do we start? Data scientists often conceptualize data processing in terms of Extract-Transform-
Load (ETL)—a common flow for readying data (Figure 4.1).1 The first step acknowledges that data comes
from somewhere, often times a directory of files or a database. The Extract step simply means to download
or move data to a staging area where the raw copy of the data is stored in its native format. Data is then
imported—sometimes referred to as parsed—from the raw data. The transform step is a feat of data wizardry,
pushing the data through steps to (not necessarily in this order):

• clean and convert into the appropriate data types;
• extract from text if not already structured as a tabular dataset;
• feature engineering or create new variables;
• reshape into a useful data structure;
• join with other datasets; and
• aggregate into summary metrics.

In larger organizations, entire teams of data engineers are the data refinery that converts raw, untamed
data into usable information. Their refined outputs are loaded into a database (e.g., a relational databases),
data warehouse, or other useful format (e.g., CSVs, Rdas) for storage. It is only at this point that data is
made available for analysis. Interestingly, computational research pays little attention to the role of the ETL
process or data processing, in general, although it may be the source of major performance gains.

In this textbook, we dedicate two chapters to illustrate workflows for transforming data into data science-
ready form. In this chapter, we begin with a broad overview of the mechanics of data processing. First, we
focus on processing at the data record level, walking through how to load raw data, screen it for peculiarities,

1The term “ETL” technically refers to a specific paradigm for big data processing. However, the concept is relevant for many
data applications. An alternative is Extract-Load-Transform (ELT) in which the “staging” step is removed and places the onus
of transformation on downstream users.

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_4

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_4

34 CHAPTER 4. TRANSFORMING DATA

Figure 4.1: The flow of an Extract, Transform, and Load (ETL) process.

and transform data values into useful, analysis-ready information. Second, we take a step back to focus on
the macroscopic structure of data—how to sculpt the structure of a dataset (rows and columns) into an
appropriate format. We round off the chapter by introducing efficiency augmenting programming paradigms,
namely, control structures (e.g., loops, if statements) that reduce repetitive coding and user-written functions
that allow scripts to be generalized and re-used.

4.1 Importing and assembling data
The first step of any data project is to load a dataset. New programmers will find the input-output (I/O)
steps at times confusing. Sometimes, analysts can find themselves investing substantial effort to find a
single feasible method to open a file using code. As a result, analysts resort to precarious data practices. In
particular, we have observed that:

• There are unnecessary rows before the header of the file. The analyst will manually delete those rows
in a spreadsheet software, which fails to preserve the edit trail.

• The number of columns differs between two files are to be appended. The analyst will either delete
columns or add empty columns to ensure the right number of columns exist, which fails to preserve the
edit trail.

• Column names are not as desired. The analyst will manually edit header names.
• Manual edits overwrite the original file. The consequence of an erroneous edit is that there is no hope

of restoring the raw data.
• Manual edits are learned and shared as an oral history rather than a codified procedure.

The first steps in data processing should be relatively painless without manual intervention. If processing
steps are not captured in the code, the transformations will also not be reproducible, allowing analyst-specific
judgments to go untraced and documented. Furthermore, manual editing fails to capitalize on the efficiency
gains of well-documented code. In short, manual edits in the import step are common habits that undermine
the success of a data science project.

In this section, we illustrate how to load and assemble a simple dataset from data files that each have
quirks. As mapped in Figure 4.2, our goal is to assemble a gas price dataset for two US ports (from Energy
Information Administration (2017)). We show how to load a CSV of gas prices for the US Gulf Coast and
two worksheets from an Excel workbook for NY Harbor gas prices. The columns in each dataset need to be

4.1. IMPORTING AND ASSEMBLING DATA 35

renamed for consistency, then the datasets are joined together into a daily time series with three columns:
date, gulf.price, and ny.price. We then save the processed data as a CSV and calculate a correlation
coefficient between the two gas price variables.

Figure 4.2: A simple flow for extracting and assembling a simple dataset.

4.1.1 Loading files
Data can be stored in many formats such as extensible markup language (XML), comma separated values
(CSV), and Excel files. Some fields have their own formats, such as NetCDF for earth science and .wav files
for audio. Some data formats require special software to load while others simply need time and patience
to crack the code. Fortunately, R is equipped to read virtually all data formats. In Table 4.1, we provide a
recommended set of functions that are easy to use and flexible.

Table 4.1: Recommended functions to load an assortment of files.

Function Package Description
read_excel readxl Load Excel files into a data frame. Note that with excel files,

generally need to specify which sheet to load using the sheet
argument and may need to skip a number of rows at the beginning
of worksheet to indicate the header row using skip.

read_csv readr Load any comma separated file into data frame format.
read_delim readr Load delimited file using any delimiter such as tab delimited ("\�")

using the sep argument.
readLines base R Read a text file, line by line. This is helpful for working with free

form text.
xmlToDataFrame XML Read XML into a data frame if the structure is simple and flat.

Note that XML files tend to have a more complex hierarchical
structure.

xmlToList XML If the XML is complicated, read each element as a list.
fromJSON rjson Read JSON into list. If JSON is a flat, non-hierarchical file, then

the resulting object can be simply converted into a data frame.
read_dta haven Load Stata data file.
read_sas haven Load SAS data files.
read_spss haven Load SPSS data files.
load base R Load saved R dataset that can contain multiple objects. Note that

this does not need to be assigned to another object.
readRDS base R Read individually saved R object.

36 CHAPTER 4. TRANSFORMING DATA

Loading a CSV. Before loading a file, consider opening files in a code editor to take a peek at the structure.2
Otherwise, blindly loading a file can also give clues as well. Let’s start with the CSV doe_usgulf.csv using
the read_csv function (readr package), assign the data to the object gulf, then inspect the first few rows
using head.
Load package
pacman::p_load(readr)

Read file
gulf <- read_csv("data/doe_usgulf.csv")

Preview first three rows
head(gulf, 3)

Because we used the readr package, the gulf file is loaded as a tibble—a variant of data frames designed
for more efficient data manipulation. Unlike data frames, tibbles read headers “as-is”, retaining the original
capitalization and punctuation. Column headers can be retrieved as a vector by specifying colnames(gulf).
When doing so, we find that the second column of gulf is labeled:

“U.S. Gulf Coast Conventional Gasoline Regular Spot Price FOB (Dollars per Gallon)”

Long variable names are unwieldy. It is good practice to keep names short, in the same case (e.g., lower case)
and without spaces and punctuation with the exception of periods. Furthermore, the column name should be
intuitive and meaningful. As the column names are quite long, we overwrite them with new concise labels.
Notice that we did not need to open the CSV in Excel to manually edit the column names!
colnames(gulf) <- c("date", "gulf.price")

Loading an Excel file. Excel files are designed for readability and analytical convenience in a WYSIWYG
interface. However, reading an Excel file in R can be a challenge without the proper tooling. The specialized
styles applied to the data are not intended to be machine readable. Also, an Excel file can hold more than
one table (e.g., worksheets)—like multiple datasets in one file. Have no fear, read_excel (readxl package)
makes the process of reading individual worksheets simple.

Below, we blindly load the first worksheet (sheet = 1) of our Excel file doe_ny.xlsx, then use head to
examine its contents. Unlike our CSV, our first attempt requires a minor tweak: The headers are located in
the second row of the sheet, which has the implication that the first row needs to be skipped.
Load package
pacman::p_load(readxl)

Read Excel
attempt1 <- read_excel("data/doe_ny.xlsx", sheet = 1)

Preview first three rows
head(attempt1, 3)

At this point, some analysts would be tempted to manually delete the first row. Resist the temptation. Most
load functions are furnished with a skip argument that allows the user to specify the number of rows to
skip. Below, we load the first and second sheets of doe_ny.xlsx, skipping the first row in each, then rename
the headers.
Load first two sheets
sheet1 <- read_excel("data/doe_ny.xlsx", sheet = 1, skip = 1)
sheet2 <- read_excel("data/doe_ny.xlsx", sheet = 2, skip = 1)

Rename columns

2Keep in mind that some files may be too large to comfortably open in a code editor.

4.1. IMPORTING AND ASSEMBLING DATA 37

colnames(sheet1) <- c("date", "ny.price")
colnames(sheet2) <- c("date", "ny.price")

Appending data. If we examine the date range (range) for each sheet1 and sheet2, the pair of worksheets
contain data from the same time series of spot prices, but cover different periods of time. Naturally, these two
tables should be reunited to yield one complete data frame. Adding the rows of one dataset to the bottom
of another similar dataset is known as appending. The two can be combined into a complete data frame by
appending one data frame to the other using the rbind function.

ny <- rbind(sheet1, sheet2)

The above scenario is the ideal: two data frames with the same number of columns and the same column
names. But what if one data frame has at least one more column than the other? The rbind.fill function
(plyr package) appends the two data frames, filling any additional non-matching columns with NA values.
Note that if two columns in two different data frames represent the same concept but have different names,
rbind.fill does not know to make the connection. It is of the utmost importance that headers are exactly
labeled as R interprets column names literally.

Pro Tip. In the example below, we used the double colon operator “::” to specifically call the rbind.fill
function within plyr. There is good reason for this: many packages use the same function names. Both the
plyr and dplyr packages, for example, have a summarise function. The double colon operator is useful for
disambiguating between packages.

ny <- plyr::rbind.fill(sheet1, sheet2)

Combining the datasets by row. The two data frames gulf and ny contain the same number of rows
and the same dates. If two datasets are in the same exact order and have the same number of rows, we can
use the cbind function to combine the datasets.
Combine data
prices <- cbind(gulf, ny)

The above result has duplicate information: the date column appears twice. To ensure the data is neatly
organized, we keep all columns from the gulf dataset and only the second column from the ny dataset. The
resulting data frame contains three columns containing daily spot prices from two sources. As we will see in
Chapter 5, two data frames can be combined in a more sophisticated way by matching on common variables.
For now, cbind is sufficient to complete this processing task.
Combine data
prices <- cbind(gulf, ny = ny[, 2])

Save the data. Processed datasets should be saved for future use. There are many different file formats
in use, some more R specific while others are more general data formats. In general, we recommend using
formats that ensure for maximum accessibility for fellow data scientists, regardless of software.

For data science teams that primarily use R, consider Rda—it allows one or more data objects from your
current session to be saved, retaining their names, data types, and formats. Rda files also substantially
compress the size of the file to save on disk space yet make it possible to open a file quickly. While convenient
for R users, data scientists using other languages can find it challenging to access your work.

For wider distribution, comma separated values (CSV) and JavaScript Object Notation (JSON) are universal
formats that are used by all data scientists. Unlike Rda, only one data object can be saved per file. Further-
more, these formats do not retain the data types, requiring additional documentation to be included to help
others to translate each variable.

Nonetheless, CSV and JSON files reign supreme. When saving these files, here are two tips of the trade:

• To save a CSV while maintaining the data frame’s shape, specify row.names = FALSE when using the
write.csv function. Otherwise, the CSV will be written with an additional nameless column for row
number.

38 CHAPTER 4. TRANSFORMING DATA

• To save a JSON, a data frame needs to be converted into a JSON object using the rjson package, then
saved to file using the write function.

Save Rda file
save(prices, file = "gas_prices.Rda")

Save CSV
write.csv(prices, "gas_prices.csv", row.names = FALSE)

Save JSON
Convert to JSON
json_out <- rjson::toJSON(prices)

Export
write(json_out, "gas_prices.json")

4.2 Manipulating values
After loading a dataset, it will invariably require some cleaning and processing. More often than not, working
with raw data means working with string values. In fact, dates are often assumed to be text characters upon
loading. It is easy to imagine that necessary data are embedded in a sentence. For example, below is a vector
of four string values:

budget <- c("Captain’s Log, Stardate 1511.8. I have $10.20 for a big galactic mac.",
"The ensign has $1,20 in her pocket.",
"The ExO has $0.25 left after paying for overpriced warp core fuel.",
"Chief medical officer is the high roller with $53,13.")

What if we need to calculate the total amount of pocket change available to buy galactic big macs? All four
elements contain dollar values that can be extracted using regular expressions or regex—a series of characters
that describe a regularly occurring text pattern.

To retrieve the dollar amounts embedded in the text, we first need to replace commas with a period using
str_replace_all(), assigning the result to a new object new. Note that in some regions, such as Europe,
commas are used as decimals rather than periods.

pacman::p_load(stringr)
new <- str_replace_all(budget, ",", "\\.")

Second, the dollar amounts need to be defined as a string pattern: a dollar sign followed by one to two digits,
followed by a period, then another two digits (“\\$\\d{1,2}\\.\\d{2}”). Using the str_extract_all
function in the stringr package, we extract all matching substrings, specifying simplify = TRUE to return
a vector:

funds <- str_extract_all(new, "\\$\\d{1,2}\\.\\d{2}", simplify = TRUE)
print(funds)

[,1]
[1,] "$10.20"
[2,] "$1.20"
[3,] "$0.25"
[4,] "$53.13"

Third, we should replace dollar sign with blank, then strip out any leading white space using str_trim().

4.2. MANIPULATING VALUES 39

funds <- str_replace_all(funds, "\\$","")
funds <- str_trim(funds)
print(funds)

[1] "10.20" "1.20" "0.25" "53.13"

Lastly, we convert the character vector to numeric values using as.numeric, then sum the vector.
money <- as.numeric(funds)
print(paste0("Total galactic big mac funds = $", sum(money)))

[1] "Total galactic big mac funds = $64.78"

In steps one through three, you will have noticed that the characters “$”, “.”, and “d” were preceded by
double backslash. These are known as escaped characters as the double backslash preceding the characters
changes their meanings. In step two, a sequence of unusual characters (“\\$\\d{1,2}\\.\\d{2}”) was used
to find the “$x.xx” pattern, which can be broken into specific commands:

• \\$ is a dollar sign.
• \\d{1,2} is a series of numerical characters that is between one to two digits long.
• \\. is a period.
• \\d{2} is a series of numerical characters that is exactly two digits long.

Mastering regex is a productivity multiplier, opening the possibility of ultra-precise text replacement, extrac-
tion, and other manipulation. There are plenty of scenarios where raw data is not quality controlled and
mass errors plague the usefulness of the data. An analyst may spend days if not weeks or months cleaning
data by hand (or rather through find and replace). With regex, haphazard cleaning is no longer an issue.
To make the most of regex requires a command of both text manipulation functions that are designed to
interpret regex as well as regex itself.

4.2.1 Text manipulation functions
Find and replace functionality are common in word processing and spreadsheet software, but are not partic-
ularly efficient with complex string patterns. Text manipulation functions in R go beyond find and replace
operations making it possible to find, extract, and edit string patterns. In Table 4.2, we list two sets of text
manipulation functions. The first set contains core functions that are furnished with Base R—these closely
resemble string manipulation functions implemented in most programming languages. While they are pow-
erful, they at times may require some additional trial and error to use. Alternatively, the stringr package
simplifies text manipulation and syntax, and in some case extends functionality. For the most part, we will
use stringr in this text.

Table 4.2: Recommended text manipulation functions.

Description Base R stringr
Returns either the index position of a matched string or the
string containing the matched portion.

grep str_which

Returns a logical vector indicating if a matched string was
found.

grepl str_detect

Searches for a specified pattern and replaces with user-specified
substring.

gsub str_replace_all

Remove matched pattern from string. gsub str_remove_all
Returns the first position of matched pattern in a string. regexpr str_locate
Returns the position of all matched patterns in a string. gregexpr str_locate_all
Extract substring based on matched pattern. Note that
regmatches is used in conjunction with regexpr or gregexpr.

regmatches str_extract_all

Splits strings into a list of values based on a delimiter. strsplit str_split

40 CHAPTER 4. TRANSFORMING DATA

Description Base R stringr
Extract substring based on start and end positions substr str_sub
Trim whitespace on either end of string (excessive spaces) trimws str_trim
Returns number of characters in string nchar str_length
Returns the number of matched patterns str_count
Convert to upper case toupper str_to_upper
Convert to lower case tolower str_to_lower
Convert to title case str_to_title
Pad string (e.g., add leading zeros to string) sprintf str_pad

Complex “find” operations are possible with stringr functions. To illustrate, below we have four sentences
that indicate when four US laws were signed.

laws <- c(". Dodd-Frank Act was signed into federal law on July 21, 2010.",
"Glass-Steagall Act was signed into federal law by FDR on June 16, 1933",
"Hatch Act went into effect on August 2, 1939",
"Sarbanes-Oxley Act was signed into law on July 30, 2002")

Suppose we need to find acts that are named for two congressmen. The str_detect() function produces
a Boolean vector if a regex pattern [A-z]{1,}-[A-z]{1,} is matched for each element in the string vector
laws. This is particularly useful if we would like to identify and subset elements that match a text pattern.

str_detect(laws, "[A-z]{1,}-[A-z]{1,}")

[1] TRUE TRUE FALSE TRUE

Otherwise, we can extract the specific senator names using str_extract_all, returning a vector of string
values.

str_extract_all(laws, "[A-z]{1,}-[A-z]{1,}", simplify = TRUE)

[,1]
[1,] "Dodd-Frank"
[2,] "Glass-Steagall"
[3,] ""
[4,] "Sarbanes-Oxley"

4.2.2 Regular Expressions (RegEx)
The secret ingredient of the text manipulation functions is the regex expressions that dictate a text pattern.
With only a few characters, even the most complex pattern can be concisely described. There are a few
basic building blocks of regex that make text search possible. There are character classes that define specific
types of character (e.g., numbers, letters, punctuation) quantifies that indicate how long a pattern should
be, escape characters that allow certain characters to hold dual meanings, among others. But first, there are
a few basic characters that make both simple and complex pattern searches possible and knowledge of these
cleverly designed operators may go a long way:

(1) Alternatives (e.g., “OR” searches) can be surfaced by using a pipe “|”. For example, a string search
for “Bob or Moe” can be represented as “Bob|Moe”.

(2) The extent of a search is denoted by parentheses (). For example, a string search for “Jenny” or an
alternative spelling like Jenny would be represented as “Jenn(y|i)”.

(3) A search for one specific character should be placed between square brackets [].

(4) The length of a match is specified using curly brackets {}.

4.2. MANIPULATING VALUES 41

In New York City, the famed avenue Broadway may be written and abbreviated in a number of ways. The
vector streets contains a few instances of spellings of Broadway mixed in with other streets that start with
the letter B.
A sampling of street names
streets <- c("Bruckner Blvd", "Bowery", "Broadway", "Bway", "Bdway",

"Broad Street", "Bridge Street", "B’way")

Search for two specific options
str_detect(streets, "Broadway|Bdway")

Search for two variations of Broadway
str_detect(streets, "B(road|’)way")

Search for cases where either d or apostrophe are between B and way
str_detect(streets, "B[d’]way")

Escaped Characters. Quite a few single characters hold a special meaning in addition to the literal meaning.
To disambiguate their meaning, a backslash precedes these characters to denote the alternative meaning. A
few include

• \n: new line.

• \r: carriage return.

• \t: tab.

• \’: single quote when in a string enclosed in single quotes (’Nay, I can\’t’).

• \": double quote when in a string enclosed in double quotes ("I have a \"guy\".").

In other cases, double backslashes should be used:

• \\.: period. Otherwise, un-escaped periods indicate searches for any single character.

• \\$: dollar sign. A dollar sign without backslashes indicates to find patterns at the end of a string.

Character Classes. A character class or character set is used to identify specific characters within a string.
How would one represent “12.301.1034” or “?!?!?!”? One or more of the following character classes can do
the job:

• [:punct:]: is a catch all for any and all punctuation such as periods, commas, semicolons, etc. To find
a specific punctuation, simply enclose the characters between two brackets. For example, to find only
commas and carrots, use “[<>,]”.

• [:alpha:]: Alphabetic characters such as a, b, c, etc. With other languages including R, searches for
any letter combinations are denoted as [a-z] for lower case, [A-Z] for upper case, and [A-z] for mixed
case.

• [:digit:]: Numerical values. With other languages including R, it is commonly written as \\d or
[0-9]. For any non-digit, write \\D.

• [:alnum:]: Alphanumeric characters (mix of letters and numbers). With other languages including R,
it is indicated using to as [0-9A-Za-z] or \\w. For any non-alphanumeric character, use \\W.

• [:space:]: Spaces such as tabs, carriage returns, etc. For any white space, use \\s. For any non-
whitespace character, use \\S.

• [:graph:]: Human readable characters including [:alnum:] and [:punct:].

• \\b: Used to denote “whole words”. \\b should be placed before and after a regex pattern. For example,
\\b\\w{10}\\b indicates a 10 letter word.

42 CHAPTER 4. TRANSFORMING DATA

These are only a few of the most important character classes. It is worth noting that many of the R specific
character classes may differ from other data science programming languages.

Quantifiers.
Each character class on its own indicates a search for any character of that class. For example, a search
for the pattern [[:alpha]] will return any element with an alphabetic character—it is not very specific. In
practice, most character searches will involve a search for more than just one character. To indicate such a
search, regex relies on quantifiers to indicate the length of patterns. For example, a search for a year between
the year 1980 and 2000 will require exactly four digits, but a search for the speed of a gust of wind will likely
vary between 1 and 3 digits. The following six quantifiers provide flexibility and specificity to accomplish
targeted search tasks:

• {n}: match pattern n times for a preceding character class. For example, "\\d{4}" looks for a four-digit
number.

• {n, m}: match pattern at least n times and not more than n times for a preceding character class. For
example, \\d{1,4} looks for a number between one and four digits.

• {n, }: match at least n times for a preceding character class. For example, \\d{4,} searches for a
number that has at least four digits.

• *: Wildcard, or match at least 0 times.

• +: Match at least once.

• ?: Match at most once.

In the example below, quantifiers are used to extract specific number patterns with a high degree of accuracy.
big_dates <- c("Octavian became Augustus on 16 Jan 27 BCE",

"In the year 2000, a computer bug was expected to topple society.",
"In the 5400000000 years, our sun will become a red dwarf.")

Return a 9 digit number
str_extract(big_dates, "\\d{9}")

Return a 4 digit substring that is flanked by empty value at either end
str_extract(big_dates, "\\b\\d{4}\\b")

Match a date that follows 16 January 27 BCE
str_extract(big_dates, "\\d{2}\\s\\w{3}\\s\\d{2}\\s\\w{3}")

Positions. Regex also builds in functionality to search for patterns based on location of a substring, such
as at the start or end of a string. There are quite a few other position matching patterns, but the following
two are the main workhorses:

• $: Search at the end of a string.

• ˆ: Start of string when placed at the beginning of a regex pattern.

To demonstrate these patterns, we’ll apply str_extract to three headlines from the BBC.
headlines <- c("May to deliver speech on Brexit",

"Pound falls with May’s comments",
"May: Brexit plans to be laid out in new year")

Find elements that contain May at the beginning of the string
str_extract(headlines, "^May")

4.2. MANIPULATING VALUES 43

Find elements that contain Brexit at the beginning of the string
str_extract(headlines, "Brexit$")

Together, these character combinations make it possible to accomplish complex string manipulation tasks.

4.2.3 DIY: Working with PII
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch04-pii.Rmd.

In an increasingly digital world, data privacy is a sensitive issue that has taken center stage. At the center
of it is the safeguarding of personally identifiable information (PII). Legislation in the European Union,
namely, the General Data Protection Regulation or GDPR, requires companies to protect the personal data
of European Union (EU) citizens associated with transactions conducted in the EU (Burgess 2019). The US
Census Bureau, which administers the decennial census, must apply disclosure avoidance practices in order
so that individuals cannot be identified (Abowd 2018). Thus, anonymization has become a common task
when processing and using sensitive PII data.

Redaction. For example, the first element in the vector below contains hypothetical PII and sensitive
information—John’s social security number and balance in his savings account are shown. When presented
with many lines of sensitive information, one could review each sentence and manually redact sensitive
information, but given thousands if not millions of pieces of sensitive information, this is simply not feasible.
statement <- c("John Doe (SSN: 012-34-5678) has $2303 in savings in his account.",

"Georgette Smith (SSN: 000-99-0000) owes $323 to the IRS.",
"Alexander Doesmith (SSN: 098-76-5432) was fined $14321 for overdue books.")

Using a combination of regex and stringr we can redact sensitive information with placeholders. To remove
the SSN, we need a regex pattern that captures a pattern with three digits (\\d{3}), a hyphen, two digits
(\\d{2}), a hyphen, then four digits (\\d{4}), or when combined: \\d{3}-\\d{2}-\\d{4}. The matched
pattern is then replaced with XXXXX.

pacman::p_load(stringr)
new_statement <- str_replace(statement,"\\d{3}-\\d{2}-\\d{4}", "XXXXX")
print(new_statement)

[1] "John Doe (SSN: XXXXX) has $2303 in savings in his account."
[2] "Georgette Smith (SSN: XXXXX) owes $323 to the IRS."
[3] "Alexander Doesmith (SSN: XXXXX) was fined $14321 for overdue books."

Next, we replace the dollar value by matching a string that starts with the dollar sign (\\$) followed by
at least one digit (\\d{1,}). And finally, John Doe’s first and last name are replaced by looking for two
substrings that each have at least one uppercase letter with an unspecified length ([A-z]{1,} [A-z]{1,})
and are found at the beginning of the string (ˆ). The resulting sentence has little to no information about
the individual in question.
Find a replace dollar amount
new_statement <- str_replace(new_statement,"\\$(\\d{1,})", "XXXXX")

Find and replace first and last name
new_statement <- str_replace(new_statement,"^[A-z]{1,} [A-z]{1,}", "XXXXX")

print(new_statement)

[1] "XXXXX (SSN: XXXXX) has XXXXX in savings in his account."
[2] "XXXXX (SSN: XXXXX) owes XXXXX to the IRS."
[3] "XXXXX (SSN: XXXXX) was fined XXXXX for overdue books."

https://github.com/DataScienceForPublicPolicy/diys

44 CHAPTER 4. TRANSFORMING DATA

Extraction. Alternatively, we can extract identifying information and create a structured dataset. Using the
same regex statements, we can apply str_extract to create a three variable data frame containing person
name, SSN, and money—all done with minimal effort.

ref_table <- data.frame(name = str_extract(statement,"^[A-z]{1,} [A-z]{1,}"),
ssn = str_extract(statement,"\\d{3}-\\d{2}-\\d{4}"),
money = str_extract(statement,"\\$(\\d{1,})"))

print(ref_table)

name ssn money
1 John Doe 012-34-5678 $2303
2 Georgette Smith 000-99-0000 $323
3 Alexander Doesmith 098-76-5432 $14321

In either case, it is advisable to conduct randomized spot checks to determine if the regex accurately identifies
the desired patterns.

4.2.4 Working with dates
Most programming languages are unable to “auto-magically” recognize a date variable, requiring coders to
specify the format using a set of date symbols. The lubridate package significantly lowers the bar for R
users, making the process of working and manipulating dates more seamless and less prone to error.
pacman::p_load(lubridate)

Upon loading lubridate, we can convert string and numeric objects with values that represent dates into date
objects. The as_date function is the easiest to use, automatically detecting the date format and assumes
that the date is recorded in UTC (see d0). In case as_date is unable to detect the date, a user can define the
date format using functions such as mdy and ymd. Both are able to accommodate both string and numeric
formats. Once data are converted into date objects, it is easy to derive new time-related information. To
calculate duration between two dates is as simple as subtraction.
Convert to date format
d0 <- as_date("2010-08-20")
d1 <- mdy("01/20/2010")
d2 <- mdy_hm("01/20/2010 00:00 AM")
d3 <- ymd(20100101)

Date calculations
d1 - d3

Furthermore, we can extract parts of a date from a date object. Rather than extracting parts of a date using
regex statements, the lubridate package makes it possible to use simplified functions to extract each year,
month, quarter, day, hour, minute, and second. For example, we can extract the year and quarter and
concatenate into a string using paste0.
Extract time values
y1 <- year(d0)
q1 <- quarter(d0)

Concatenate
paste0(y1, "Q", q1)

In base R, we can alternatively use the format function to specify an output format using date symbols. The
examples below illustrate three different versions of the same month-year combination.
YYYY-MM format
format(d0, "%Y-%m")

https://lubridate.tidyverse.org/

4.3. THE STRUCTURE OF DATA 45

Month Name - YYYY format
format(d0, "%B %Y")

Month Abbreviation - YY format
format(d0, "%b-%y")

Either option gets the job done, but the choice depends on one’s willingness to become familiar with date
symbols.

4.3 The structure of data
4.3.1 Matrix or data frame?
Last chapter, we introduced matrices and data frames as options for storing multivariate data. Matrices are
vectors of the same variable type, but in two dimensions (n×m dimensions). Data frames are a generalization
of matrices that allow for each column of data to hold different data types as well as refer to individual
columns by a user-specified name.

When should each matrices and data frames be used? From a pure logistical perspective, data frames are more
flexible with respect to its ability to store multiple data types. Some code libraries are built specifically for
matrices and others for data frames. Ultimately, data frames are generally a safe bet. They can be subsetted,
sorted, reshaped, collapsed, and merged, retaining the variable types (Table 4.3).

Table 4.3: Matrices versus Data Frames.

Matrix Data Frame
Pros Memory efficient. Good for advanced

mathematical operations.
Store mixed types of data types. Allows user
to refer to columns by an explicit name.

Cons Able to store one data type at a time—leads to
slightly more work required to manage multiple
matrices. Columns can only be referred to by
index number.

Not as memory efficient.

To illustrate data in action, we will draw from a dataset containing all reported thefts, burglaries, and
robberies in Chicago between 2014 and 2018 (Chicago Police Department 2018). Provided as an Rda file, the
file contains a data frame crimes with n = 428, 250 with 17 variables.

load("data/chicago_crime.Rda")

4.3.2 Array indexes
We can think of data frames and matrices as data organized along a grid—essentially a spreadsheet. Each
cell in a data frame can be located using a coordinate set of array indexes, or a number that indicate the
location along a row or column. The first, fifth, and millionth rows have index values of 1, 5, and 1000000. The
second, ninth, and one-thousandth columns have values of 2, 9, and 1000. This is similar to other languages
like FORTRAN, MATLAB, and Julia. In contrast, array indexes in programming languages such as Python,
Perl, C, Java, and Ruby start with 0—often a point of confusion when transitioning between languages.

Why do array indexes matter? Understanding this is the gateway to subsetting data, or slicing and dicing
as one pleases. To extract a specific part of the data frame requires one to refer to the array indexes in a
specific syntax:

46 CHAPTER 4. TRANSFORMING DATA

crimes[7, 6]

where crimes is the name of a data frame. 7 refers to the 7th row and 6 is the 6th column—both of which
are sandwiched in square brackets and separated by a comma. Executing the above state will extract the
value in the seventh row and sixth column.

What if we want to extract an entire row? Simply specify the row index of interest and leave the column
blank returns the desired result. The output is a single row data frame describing a robbery that occurred
on “March 18, 2015 at 11:55 PM”.
crimes[7,]

To extract multiple records by row index depends on whether the request is sequential or piecemeal. Below,
the first line extracts a range of rows from the 2nd through 4th rows in crimes, whereas the second extracts
two non-overlapping ranges that are specified as a numeric vector.
crimes[2:4,] # Apply the index range to extract rows
crimes[c(1:2, 10:11),] # Specific indexes

The same notation can be used to extract all street blocks that had a crime reported by typing the number 4
after the comma in square brackets. The number 4 is the column index that contains block names. Rather
than returning a data frame, the result is a vector containing the partially redacted street block.

crimes[,4]

In addition, data frames provide a few additional options for extracting the block column.
crimes[, "block"] # Extract column with"block" label
crimes[["block"]]

List syntax to extract column from data frame
crimes$block
Compact version of data column manipulation

To extract two or more columns follows a familiar pattern, making use of either a range of column indexes
or a vector of column names.
crimes[, 3:4] # Extract multiple columns
crimes[, c("date", "block")] # Multiple column labels

4.3.3 Subsetting
Extracting specific subsets is perhaps one of the most essential skills of data processing as it allows one to
focus on specific aspects of the data. In addition to calling specific array indexes to subset data, we can
extract specific rows based on user-specified criteria, such as “crimes that happened in 2015” or “robberies
that involved a handgun”. Here, we describe three approaches using logical vectors, the which command, and
the filter command in the dplyr library. The first two options are possible using the pre-built functionality
of R.

The logical vector approach first creates a Boolean vector that describes some logical comparison, then
passing the logical vector to the data frame to subset.
Logical vector
group1 <- crimes$year == 2015

Select based on vector
Out <- crimes[group1,]

While this is a perfectly valid way of subsetting data, the which approach offers speed gains. The logical
vector is passed to the which function to retrieve the row index of each TRUE value, thereby reducing the

4.3. THE STRUCTURE OF DATA 47

number of elements that need to be evaluated in the subset. The relevant row indexes are then passed to the
data frame, returning a result far faster than the first option.
Logical vector
Group1 <- which(crimes$year == 2015)

Select based on vector
Out <- crimes[group1,]

Lastly, and perhaps more convenient, is the filter function in the dplyr package. Not only is the syntax
concise, the processing time is fast. The command only requires the data frame to be specified once and
variables can be specified without the dollar sign notation.

pacman::p_load(dplyr)
out <- filter(crimes, year == 2015)

The dplyr allows for piping of operations, meaning that multiple steps can be combined into one function
call. The pipe operator %>% allows the output of one step to be input into another, thereby creating a pipeline.
For example, the statement below is the same as the above.

out <- crimes %>% filter(year == 2015)

To get comfortable, let’s walk through a few different scenarios.

• Example 1 : Find all crimes that were armed. To do this, we use str_detect function from stringr
to search for the term ARMED from the description field in crimes, then use the result to subset using
filter.

• Example 2 : Find all cases that where the primary.type of crime was either a THEFT or BURGLARY. So
that the statement can be one compact line, we use the %in% operator to search if any of the elements
in the vector c(“THEFT”, “BURGLARY”) are found in primary.type.

• Example 3 : Extract rows that meet two criteria is as simple as using logical operators. The pipe
operator “|” should be used to represent OR, whereas “&” represents AND. To find all cases where an
arrest occurred after the year 2016 :

Example 1
out <- filter(crimes, str_detect(crimes$description, "ARMED"))

Example 2
out <- filter(crimes, primary.type %in% c("THEFT", "BURGLARY"))

Example 3
out <- filter(crimes, arrest == TRUE & year > 2016)

4.3.4 Sorting and re-ordering
At times, data frames need to be re-arranged to make it easier to navigate the data.

Re-arranging rows and columns. For one thing, columns and rows can be re-arranged or even removed
by listing column indexes in a desired order. By passing a vector of column indexes to a data frame, we can
not only re-order columns but also remove them. In the example below, we first re-order columns, moving
columns 10 through 17 to the beginning of the dataset and moving one through nine to the end. Then, we
create a new dataset crime_new dropping columns 10 and 13 by placing a negative (-) before the column
indexes.
Re-order
crimes <- crimes[, c(10:17, 1:9)]

48 CHAPTER 4. TRANSFORMING DATA

Drop columns
crime_new <- crimes[, -c(10, 13)]

It is more likely that we would organize our data calling specific columns by name. The standard approach
is to pass a string vector of column names, requiring each name to be placed in quotations. A more concise
approach using the select function from dplyr lists the names of desired columns without quotations.
Below, we illustrate how to create a data frame of geographic coordinates.
Base R
crimes_geo <- crimes[, c("latitude", "longitude")]

dplyr approach
crimes_geo <- select(crimes, latitude, longitude)

To sort a dataset can be done using order, which returns a vector of row indices in ascending order based
on the variable of interest. To sort descending, add we can either “-” before the variable if it is a numeric
or specify decreasing = T. The order function should not be confused with its cousin the sort function,
which is designed to order and return a vector of values.
Base R - sort ascending
crimes[order(crimes$latitude, crimes$longitude),]

Base R - sort descending (2 options)
crimes[order(crimes$latitude, crimes$longitude, decreasing = TRUE),]
crimes[order(-crimes$latitude, -crimes$longitude),]

The base R options are somewhat clunky, requiring repetition of the name of the data frame. In contrast, the
arrange function in the dplyr package reduces redundancy. Similar to order, the arrange function sorts
ascending by default.
dplyr
crimes <- arrange(crimes, latitude, longitude)
crimes <- arrange(crimes, desc(latitude), desc(longitude))

4.3.5 Aggregating data
Seeing the pattern in the data can be challenging when it is too granular. Aggregating data (or “rolling up”)
into coarser units shows the landscape of the forest rather than the shape of an individual tree. It is also a
strategy for anonymizing data by stratum or groups of individuals while communicating insight.

Here, we introduce the summarise and group_by functions from dplyr. The former summarise is used to
calculate summary metrics on a set of variables, such as the count of crimes or the average latitude of
crimes. The group_by indicates along which variables should aggregation occur. Together, a highly granular
dataset can be converted into a more compact summary set, whether a time series of activity over time or
a cross-sectional snapshot.

Suppose we would like to see the total number of each type of crime for each ward of Chicago. We can
easily send the crimes dataset into a pipeline like the one below. A group_by statement indicates that all
subsequent calculations will be applied for each combination of type of crime (primary.type) and ward of
the city (ward). The data is then summarized by calculating two variables: the number of crimes num.crimes
using the count function n and the arrest.rate by taking the mean of the arrest variable. This process
is a new data frame with only n = 151 and k = 4. It is clear how this can be used—turning raw data into
aggregate, communicable insights.

crimes %>%
group_by(primary.type, ward) %>%
summarise(num.crimes = n(),

4.3. THE STRUCTURE OF DATA 49

arrest.rate = 100 * mean(arrest))

Any variable can be used in the group_by statement, separating each dimension by a comma. The summarise
function is quite flexible encompassing a large number of summary statistics:

• Central tendency: mean, median
• Dispersion: sd, IQR, mad
• Range: min, max, quantile
• Position: first, last, nth,
• Count: n, n_distinct
• Logical: any, all

Constructing Time Series. Are there more arrests over time? Do they follow a predictable seasonal
pattern? Individual event records often need to be rolled up into a time series—data that is aggregate by
some time unit in order to see patterns over time. Suppose we would like to visualize the arrest rates in
Chicago—the proportion of crimes that resulted in an arrest. To learn if arrest rates have evolved over time,
we process the data following two simple steps: (1) Create quarterly time variables using a combination of
mdy_hms and quarter functions from lubridate. The resulting time variable will be used in group_by.
(2) Summarize the data into a new data frame. When we plot the resulting 20-observation data frame
crimes_qtr, we can see that arrest rates have fallen over time (Figure 4.3).
Convert to date form and extract the quarter
crimes$date1 <- mdy_hms(crimes$date)
crimes$qtr <- quarter(crimes$date1, with_year = TRUE)

Summarized data
crimes_qtr <- crimes %>%
group_by(qtr) %>%
summarise(arrest.rate = 100 * mean(arrest))

Plot a line chart
plot(crimes_qtr$arrest.rate,

type = "b", col = "blue", cex.lab = 0.9,
ylab = "Arrest Rate (%)",
xlab = "Time (Quarters)")

4.3.6 Reshaping data
The shape and structure of a dataset usually go hand-in-hand with how it will be used. Data are generally
stored in either long form or wide form as shown in Figure 4.4. Wide form stores each observation (unit
of analysis) as a row and its attributes (variables) as a set of columns. As we look across a row, we see
all information that describes that observation. In our example, each row is a Chicago Police Ward, each
quarter is a separate variable, and arrest rates in each cell. This format is well suited for visual inspection
and comparison between observations. Wide form, however, is not conducive for statistical analysis.

Long form, in contrast, spreads an observation’s attributes over multiple rows—there are as many rows as
observations × attributes. Most transaction and event logs (e.g., financial records, call log) are recorded as
long form with an observation ID, a time stamp, and columns for each metrics. Panel datasets are a special
case of long form that tracks observations over time. Table (A) is a panel dataset in which each row is a
different ward in Chicago (e.g., 10, 11, 12) in a quarter (e.g., 2013.1, 2014.1).

Data will likely need to be reshaped between long and wide forms. For those who have familiarity with
spreadsheet software, reshaping data essentially is the same as working with a pivot table. In R, we rely on
a package called reshape2 to reduce the process to a pair of functions: melt and dcast. The former melt
converts data into long form, whereas the latter dcast converts data into wide form.

50 CHAPTER 4. TRANSFORMING DATA

5 10 15 20

8
9

10
11

12

Time (Quarters)

Ar
re

st
 R

at
e

(%
)

Figure 4.3: Time series of crime over time in Chicago.

Figure 4.4: Data in long form (A) and wide form (B). Two cells are color-coded to illustrate how the same
value is positioned in each format.

pacman::p_load(reshape2)

Long to Wide. Suppose we summarized the crimes data into a quarterly dataset of arrest rates by type of
crime and ward. This data would be returned in long form.

crimes_long <- crimes %>%
group_by(qtr, ward, primary.type) %>%

4.4. CONTROL STRUCTURES 51

summarise(arrest.rate = 100 * mean(arrest),
num.crimes = n())

The dcast function converts data from long form to wide form and expects a data frame, a formula, and at
least one value variable. Let’s walk through the example below that produces a new data frame where each
row is a type of crime in a ward and each column is the arrest rate for each time period.

• The formula dictates the desired structure. In the formula ward + primary.type ~ period, for exam-
ple, variables to the left of the tilde ~ are treated as row identifiers and variables to the right are
dimensions that will be spread across the columns. Multiple dimensions can be specified, each sepa-
rated by an addition symbol +.

• The parameter value.var indicates the variable that will fill the cells of the new data structure, which
in this case is the arrest.rate.

The resulting data frame has n = 151 rows and k = 22 columns.
crimes_wide <- dcast(crimes_long,

ward + primary.type ~ qtr,
value.var = "arrest.rate")

Suppose we would like to reshape both the arrest.rate and the num.crimes. This requires two modifications
to the above code: (1) We will need to install and load the data.table package, which converts data frames
into a class of objects for memory efficient and speedy data manipulation. From that package, we will need
to use setDT to convert our data frame into the appropriate format. (2) Specify a string vector of variable
names for the value.var.

The resulting data frame has n = 150 rows and k = 42 columns.
pacman::p_load(data.table)
crimes_widetoo <- dcast(setDT(crimes_long),

ward + primary.type ~ qtr,
value.var = c("arrest.rate", "num.crimes"))

Wide to Long. It is just as simple to roll the data back into long form using the melt function. The example
below re-converts the crimes_wide data frame into long form. Remember that all but two variables contain
arrest.rate for each quarter. Moving from wide to long means that all the arrest.rate columns will be
consolidated into two variables: column headers will be captured as a new time variable and column values
will be arrest rates. The function expects

• a data frame (crimes_wide).
• id.vars: a vector of variable names or column indexes that indicate row identifiers.
• variable.name: a name of a new variable to which the wide column names will be stored.
• value.var: a name of a new variable to store the values.
crimes_longtoo <- melt(crimes_wide,

id.vars = c("ward", "primary.type"),
variable.name = "qtr",
value.name = "arrest.rate")

4.4 Control structures
Data scraped from websites and media sources are becoming increasingly more common in the digital age.
Investment companies regularly use news reports to detect sentiment toward companies in order to predict
the direction of stock prices and earnings reports. Economists use scraped data from e-commerce sites to
measure inflation. Scraping is quite repetitive. The same set of pre-defined actions are applied to many
different webpages on a website. The format of that webpage dictates the types of actions. One could
manually target websites and choose the code to be applied, but a far more scalable solution is to take

52 CHAPTER 4. TRANSFORMING DATA

advantage of control structures.

Given some variable, a control structure determines how a program will treat that variable given pre-
determined conditions and parameters. The webpage formats of a New York Times article and a Fox News
article, for example, are fundamentally different, thus a scalable web scraping program should code that are
fitting to each type in order to get the desired data. Likewise, a script designed to extract debits and credits
from a financial statement may look at the header of a table, then decide how to handle each type of value. In
this section, we will cover two commonly used control structures that make programming far more efficient:
if statements and loops.

4.4.1 If statement
If statements evaluate a logical statement, then execute a script based on whether the evaluated statement
is true or false. If the statement is TRUE, then the code block is executed. Below, we have written some logic
to evaluate if a manager has spent over his allocated budget for the year, returning a printed statement if
spending exceeded acceptable tolerance of $400.

spending <- 450
if(spending > 400){

If statement true, run script between curly brackets
print("You’re over budget. Cut back.")

}

[1] "You’re over budget. Cut back."

In cases where there are two or more choices, if...else statements would be appropriate. In addition to
the if() statement, an else statement can be included to handle cases where the logical statement is FALSE.

spending <- 399
if(spending >= 400){

If statement true, run script goes here
print("You’re over budget. Cut back.")

} else {
Else, run script goes here
print("You’re within budget, but watch it.")

}

The complexity of these statements can accommodate more complex logic:
spending <- 500
if(spending >= 450){

print("High roller, eh? Is your debt supported by a wealthy donor?")
} else if(spending >= 400){

print("You’re over budget. Cut back.")
} else if(spending >= 50 && spending < 400){

print("You’re within budget. Good job.")
} else if(spending < 50 &){

print("You might be under-reporting your spending.")
}

If statements work is designed to evaluate one logical statement at a time and requires a loop to evaluate
for each element of a vector—a control structure we cover in the next subsection. For simple if statements,
we can rely on the ifelse function that evaluates a logical condition for each element in a data frame or
vector, then returns a vector with desired transformations.
Vector of spending for multiple managers
spending <- c(50, 200, 500)

4.4. CONTROL STRUCTURES 53

Ifelse returning overbudget flags
out <- ifelse(spending >= 400, "Over-budget", "Within Budget")

4.4.2 For-loops
Many programming tasks apply the same code over and over. Rather than repeating tasks manually, loops
can reduce redundant tasks by applying the same function over a range of elements, objects, etc. It is an
efficiency augmenting functionality that is central to program and allows computers to perform tasks in a
semi-automated way. Conceptually, for loops can be likened to an assembly line in a car factory. In order to
build a car, a series of well-defined, well-timed processes need to be coordinated in a serial fashion. To build
500 cars, the process needs to be executed 500 times. For-loops are essentially the same: Given a well-defined
set of tasks, the manufacturing process runs 500 times.

Let’s take the following toy example in which we print to console a set of numbers. The code block essentially
says “print values for the range of 1 through 5”, where i is an index value. When executing the statement, R
will push the first value in the sequence of 1:5 into the index (in this case, it’s the number 1), then the code
block in between the curly brackets ({}) will be executed, treating i as if it’s the number 1. Upon executing
the code without error, R will advance to the next value in the sequence and repeat the process until all
values in the sequence have been completed.

for(i in 1:5){
print(paste0("Car #", i, " is done."))

}

[1] "Car #1 is done."
[1] "Car #2 is done."
[1] "Car #3 is done."
[1] "Car #4 is done."
[1] "Car #5 is done."

We can do the same for a vector or list of values. In the example below, the vector news contains six terms.
Using a for-loop, we can print out each word and append the number of characters to a placeholder vector
word_length.
Vector of words
news <- c("The","Dow","Is","Up","By","400pts")
word_length <- c()

for(i in news){
print(i)
word_length <- c(word_length, nchar(i))

}

[1] "The"
[1] "Dow"
[1] "Is"
[1] "Up"
[1] "By"
[1] "400pts"

A few things to keep in mind when using loops. First, loops are convenient to use but there are often times
more efficient functions that handle vectorized problems—or a function that is designed to be applied to all
elements of a vector. For example, while the word_length example uses a loop to calculate the length of
each word in the news vector, the nchar function can actually be applied to all words in the news vector
without a loop. Second, all objects created in a loop are stored in the programming environment. While this
means that all objects will be available after the loop is complete, it also means each subsequent iteration’s
results will overwrite the previous. To save the result of each iteration requires one to explicitly indicate how

54 CHAPTER 4. TRANSFORMING DATA

results should be stored.

If a calculation needs to be applied to each of one million files and the results need to be saved, then for-loops
are a good option. A common paradigm involves the following:

1. Create empty placeholder object (e.g., a vector, matrix, or data frame) to store results;
2. Initialize loop; then
3. Append outputs to placeholder at the end of each loop iteration.

In the example below, we simulate 10,000 observations of a Random Walk, which is a time series in which
the best forecast of today’s value is yesterday’s value plus an error term ut:

ŷt = yt−1 + ut

Many real-world phenomena can be described as random walks, such as exchange rates and stock prices.
For statistical research, it is often necessary to simulate a random walk process in order to show how a new
algorithm performs. Below, we simulate a random walk in which we create a placeholder data frame df in
iteration 1. In each subsequent iteration, we add the previous period’s value with a random growth selected
from alpha, then append the result to df. To simulate 10,000 observations requires roughly 7 seconds to
complete. What if we wanted to reduce the compute time? In the age of big data, it might be necessary to
run millions of simulations, thus 7 seconds may actually be an eternity.
Set placeholder data frame with n rows
n <- 10000
alpha <- c(-1, 1)

Simulate Random Walk
start <- Sys.time()

for(i in 1:n){
if(i == 1){

df <- data.frame(iter = i,
y = sample(alpha, 1))

} else {
df <- rbind(df,

data.frame(iter = i,
y = df$y[i-1] + sample(alpha, 1)))

}
}

Timer stop
Sys.time() - start

Time difference of 14.13205 secs

If we know the total space required for the simulation, we can set up df with a pre-specified number of rows
and overwrite individual cells when needed. Such a simple change vastly reduces the processing time to less
than 1.5 seconds—only one-quarter of the time! Why? Part of the answer lies in the functional differences
between appending to data frames and overwriting cells in a data frame. When we use rbind, R is forced to
overwrite the entire data frame with an additional row. As objects become large, the write time compounds.
In contrast, overwriting individual cells only replaces specific cells, removing unnecessary read-write time.
Set placeholder data frame with n rows
n <-10000
df <-
data.frame(iteration =1:n,

y = numeric(n))
alpha <- c(-1, 1)

4.4. CONTROL STRUCTURES 55

Simulate Random Walk
start <- Sys.time()

for(i in 1:n){
if(i == 1){

df$y[i] <- sample(alpha, 1)
} else {

df$y[i] <- df$y[i-1] + sample(alpha, 1)
}

}

Timer stop
Sys.time() - start

Time difference of 1.079904 secs

Even more surprising, there are simpler functions that can simulate a random walk in far less time and with
less code. In fact, a simple combination of the sample and cumsum functions can randomly draw n = 10000
values of ut and calculate a vector of elements with cumulative sums (effectively a random walk), all in less
than 0.01 seconds. This is all to show that loops are easy to use, but be sure to plan out your loops carefully
to maximize efficiency and it is worth conducting some due diligence to identify possible alternatives.
Simulate Random Walk in one line
start <- Sys.time()
out <- cumsum(sample(alpha, n, replace = T))
Sys.time() - start

Time difference of 0.00270009 secs

4.4.3 While
Whereas for-loops require a range of values through which to iterate, while statements continue to be
executed until a condition is no longer true. We can imagine scenarios in which the number of required
iterations is an unknown but a pre-defined criteria is known. Optimization problems with a systems of
equations, for example, require that multiple candidate solutions be tested in order to find a solution that
minimizes an error function—while loops are great for automating searches.

A few key ingredients are required. The while statement requires a logical statement (e.g., x > 2)—the goal.
So as long x is greater than 2, the statement will continue to run. There also needs to be an update step
in the script that ensures that values that are to be evaluated are tuned toward satisfying the goal so that
eventually x is no longer greater than 2. Otherwise, the while loop will continue for infinitum, also known
as an infinite loop.

To put this into perspective, we construct a while loop to search for a value of x that minimizes the formula
y = x

3
2 −8x+100. Before the loop, we set initial value of x = −100, set step = 1 to control the fineness of the

search interval for x, create a countervariable i to keep track of the number of iterations, and a placeholder
vector vals to store values of y. The while loop starts by evaluating if one of two conditions is true: if there
are less than two iterations (i < 2) or if we have found a minimum value (if current value of y in iteration
i is less than the previous iteration). If either is true, then the script within the curly braces is executed,
otherwise the loop terminates. Notice that step is added to x in order to advance the loop to the next set of
conditions to be evaluated.
Set initial value of x and i
x <- -100
step <- 1
i <- 0
vals <- c()

56 CHAPTER 4. TRANSFORMING DATA

Find a minimum of the function
Where previous value is greater than current
while(i < 2 || vals[i-1] >= vals[i]){

vals <- c(vals, x^2 - 8*x + 100)
i <- length(vals)
x <- x + step

}

While these loops are useful for searching for solutions, the problem needs to be well defined and well
bounded.

4.5 Functions
Data manipulation tasks are often repeated for many different projects and it is not uncommon for two or
more scripts to contain the same exact steps. Rather than tediously modifying scripts, try to live by the
following philosophy: once, then never again. The idea is that if code is well designed and documented, it can
serve as re-usable tools that can be re-applied to similar problems. This is the basis of user-written functions:
a coder can define some set of standard required inputs on which a set of steps can be applied to produce a
standard output, then their work can be shared with many others who face similar problems

A function is constructed as follows. Using function, a set of parameters are specified upfront as the key
ingredients, then a set of coded procedures are executed using those same parameters. In the example below,
we construct a function meanToo that replicates the functionality of the mean function. meanToo requires a
data frame df and a variable name in string format var.name. Within the curly brackets, we insert code that
uses the input parameters as placeholders. The mean is calculated as the sum of var.name in data frame
df divided by the number of rows in df, then assigns the result to the object temp. These calculations are
temporary and only executed with a local environment—they are wiped once the function finishes running.
However, the temp object can be extracted by passing it to return. All of the above steps are assigned to
the meanToo object that is treated like any other function.

It is good practice to include documentation about what the function does and how to use it. At a minimum,
include what the function is, the arguments, and the output. Typically in the culture of open-source software,
code should be written with others in mind: keep it transparent and re-usable.
meanToo <- function(df, var.name, ...){

#
Calculate mean of a variable in a data frame
#
Args:
df = data frame
var.name = variable name (character)
#
Returns:
A numeric value

Code goes here
temp <- sum(df[[var.name]])/nrow(df)

Return desired result
return(temp)

}

To use the function, first run the function code above, then fill in the input parameters. Any script can be
converted into a function for general use. While it does require some time upfront to properly write a usable

4.6. BEYOND THIS CHAPTER 57

function, getting into the habit is worth the investment for efficiency and sharing your technical perspective.
meanToo(data, "x1")

4.6 Beyond this chapter
4.6.1 Best practices
Writing just any piece of code is easy. The real challenge is to ensure that it is re-usable, functional, and
adopted.

Data processing is not like a vampiric feeding frenzy of the sort that might be seen on Buffy the Vampire
slayer (the TV show): one simply does not arbitrarily chomp at and slice data without any thought as to
what comes next. It requires discipline and finesse to acquire a raw piece of information and extract the
empirical substance. It is the foundational step of any successful data science project.

Imagine that you have conducted a three-month analytics project, rushing to obtain to a result. If asked to
provide backup, documentation, and a process, it may very well require an additional few months to decipher
your passionate but hasty explorations. Where did this data come from? Why did I take a dot product in this
equation? What happened to the raw file? Who has Bob mentioned in this email? Which directors have seen
the report? Ultimately, the data scientist is in control and should be empowered to conduct data processing
in a structured, scientific manner. Here are five tips that can bulletproof data processing:

• Define a file structure and stick to it. All work product needs to be chronicled in a coherent structure.
At a minimum, create a folder for scripts to store all code, another for raw data, a folder for outputs
from data processing, and another for documentation. Choose any file structure, but make sure it is
consistent and always followed. Name scripts and data in a logical, intuitive format. And perhaps more
importantly, create a Read Me file—a simple text document that explains the contents of the project
and keeps a log of versions.

• Adopt and stick to a coding style. Each file, data field, and function should follow a style so that the
logic is cohesive, readable, and traceable. The Google R Style Guide (Google 2009), for example, sets
easy to follow guidelines. According to the style guide, variable names should be labeled as lower-
case characters with a “.” as a separator: variable.name. Functions should be named in proper case
without spaces: NewFunction or MyFunction. Regardless of the style guide, file names should be mean-
ingful and the only punctuation used should be “_” for spaces and “.” to accompany the file type:
gdp_2014_10_02.json. But most importantly, the code needs to make common sense. Be vigilant with
your code style as it may be the difference between a successful adopted project and a failed project.

• Version up. Each time code is written, modified, amended, or updated, a new version should be saved.
Cloud-based services such as Github make version control simple and also allow groups of coders to
work together. If storing work product on a local server or computer, simply save the file with a new
version number as well as making an entry into a log or Read Me file. The log file can be as simple as
a text file with time stamps indicating the date of the edit, the file name, and the nature of the edit.

• Think modularly with code. One of the greatest human inventions is the assembly line. Each step in
the process is discrete, requiring workers to specialize in one set of well-defined tasks. As a worker
becomes specialized, production speed increases as they refine their ability to accomplish a specific
task. If any step in the process needs to be improved, revised, or replaced, all other steps in the process
are not disrupted—only one step needs to be addressed. This standardization of processes is the only
way to scale. Programming and data processing are the same—the goal is to produce well-written code
that can reliably accomplish and re-accomplish the same tasks using newly available data. In essence,
one needs to construct code that lays the pipeline for data to flow from loading, to cleansing and
standardization of values, re-structuring into usable form, and storing in an accessible format. Each
module of the process should be able to be swapped out like an interchangeable piece if need be.

• Think about data in layers. All data should ideally stem from a single “source of truth” – one harmonized

https://github.com/

58 CHAPTER 4. TRANSFORMING DATA

set of data should serve as the basis for all applications, whether its supporting inspectors in the field
or informing high-level policy making. It is thus not uncommon to have data stored in varying degrees
of processing. NASA earth science satellite imagery, for example, is stored in at least six different levels
of varying amounts of processing. Level 0 data are raw satellite instrument data at full resolution.
Level 1B contained reconstructed, calibrated, and processed data that serve as the core source data
for downstream applications. Whereas Level 4 are outputs from specific models and analyses. Before
commencing data processing, first consider what end users want to accomplish, then process the dataset
into a common, standard form that can serve as a lowest common denominator. It is from that source
dataset that all use case specific derived data should come.

It will undoubtedly require some time to first familiarize oneself with the steps of data processing before
coding projects become tidy engineering feats. Nonetheless, these best practices are worthy ideals to which
to strive.

4.6.2 Further study
Indeed, data processing is an expansive discipline, extending well beyond the capabilities of R alone. In fact,
R relies on other programming languages, software and hardware infrastructure to extend its functionality.
Here, we briefly touch upon other topics that are worth studying, such as data processing packages, parallel,
computation, databases, and business intelligence.

Data processing with R. Preparing data will always occupy a significant amount of a data scientist’s
time—it is unavoidable. However, faster one can process data, the more time there will be to experiment and
develop high-impact use cases. This, of course, requires substantial practice to develop programming muscle
memory.

While base R can handle much of a data scientist’s processing requirements, there are more efficient data
processing packages, often times built on top of faster languages (e.g., C). In this textbook, for example, we
rely on the tidyverse suite of packages that emphasize readability and extensibility—there are many neat
tricks of the trade. For in-depth treatment, consider reading R for Data Science: Import, tidy, transform,
visualize, and model data (Wickham and Grolemund 2017). The textbook provides many useful examples
and illustrates the effective ways to mold data.

The data.table package is an alternative that has much of the same functionality as dplyr. The package’s
syntax is less readable and more concise. Relative to dplyr, it offers speed and memory efficiency gains,
especially with large datasets. To get started with data.table, visit the package’s reference site.3.

Parallel computation. What if it were possible to split a large processing job across multiple machines or
nodes? This would reduce the time needed to work with large datasets. This is the simple idea behind parallel
computation: spread the load across multiple workers to shorten the time needed to accomplish a task. Early
implementations of parallel processing required significant information technology experience; However, in
today’s day and age, open-source technologies have lowered the bar to entry. In fact, it is possible to even
take advantage of the multiple cores on a laptop’s processor to hasten a processing job. The doParallel and
parallel packages allow programmers to exert control over how many cores, processors, or machines will be
used to split a job, then facilitate the coordination task of managing the multiple parallel tasks. For a gentle
introduction, review the vignette for the doParallel package.4 There are also parallel computing resources
for virtually any use case available on CRAN.5. Among the most popular is Apache Spark (Spark for short),
a framework designed to handle real-time streaming and large-scale data on server infrastructure. In fact,
Spark has become an industry standard for heavy data processing and modeling. For a gentle introduction
to Spark, consider reading Mastering Spark with R (Luraschi, Kuo, and Ruiz 2019).6

Advanced topics in R. Many data scientists will exhaust the functionality of current packages and find
themselves writing a custom package for specific use cases. Building a package is accessible to anyone. To

3See the data.table reference site at https://rdatatable.gitlab.io/data.table
4See https://cran.r-project.org/web/packages/doParallel/
5See https://cran.r-project.org/web/views/HighPerformanceComputing.html
6Also available at https://therinspark.com/

https://rdatatable.gitlab.io/data.table
https://cran.r-project.org/web/packages/doParallel/
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://therinspark.com/

4.6. BEYOND THIS CHAPTER 59

get started requires the devtools and roxygen2 packages. However, to design a well-functioning, cohesive
package requires an understanding of software design, object-oriented programming , and abstraction of
functionality from a more efficient language for use in R. For more technically advanced readers, consider
reading Advanced R (Wickham 2017).

Databases. While some data projects can be built around a single file (e.g., CSVs and Excel files), other
projects have more complex requirements. For instance, some datasets are only useful if updated regularly
over time (e.g., COVID-19 new case counts, patient records). Other datasets are too large to be stored in a
single file and need to be subdivided for efficient storage (e.g., one day’s worth of satellite imagery captured
across the world). To create and maintain a gold copy a large, ever-changing dataset, consider setting up a
database.

Databases store and catalog data in a well-structured electronic format. Databases can be hosted on a
laptop computer, but often times large data requires databases to be hosted on a powerful server or cloud
environment built with advanced computation hardware. Relying a Database Manage System (DBMS)—a
software to manage and interact with the data—users can perform CRUD operations, namely, Create (add
a new record), Read (read or load a file), Update (modify an existing record), and Delete (remove a record).
These four operations not only enable data analyses and exploration, but also serve as the foundation
on which technologically advanced use cases are built (e.g., APIs, prediction engines, etc.). For tabular
data that is typical in policy settings, data scientists will query and extract data using Structured Query
Language (SQL)—a special language for CRUD operations. A command of basic database operations will
prove invaluable throughout a career as a data scientist.

For a conceptual overview of database design, consider Database Design for Mere Mortals: A Hands-On
Guide to Relational Database Design (Hernandez 2013). For a general introduction to SQL for a variety of
DBMS, consider SQL Queries for Mere Mortals: A Hands-On Guide to Data Manipulation in SQL (Viescas
2018).

Businesses have sales, revenue, cost, and customer engagement data. Public sector agencies also have “busi-
ness” data on their operations, such as complaints, phone calls, work orders, among others. A natural
evolution from databases is Business Intelligence (BI), or analysis of business data. In both cases, executives
and managers can use BI tools (e.g., Tableau, QlikView) to summarize and drill down on key operational
metrics to monitor the current state of affairs. Imagine a case in which a manager clicks on a bar in a bar
graph, then all metrics are subset to data that are contained within that bar’s stratum. On a technical level,
this simple click commands the BI tool to query and aggregate data rapidly, which in turn requires data to
be pre-processed and stored in an analysis-ready format. For this reason, BI tools are built on data ware-
houses—a type of databasing system that is optimized for analysis and querying for business intelligence
(BI) applications. Raw data are pushed through an Extract-Transform-Load (ETL) process to clean, blend,
reshape, and aggregate data.7 For a conceptual overview of BI applications and data warehousing, consider
reading the following articles:

• Chaudhuri, Surajit and Umeshwar Dayal. 1997. “An overview of data warehousing and OLAP technol-
ogy”. SIGMOD Rec. 26, (1): 65–74. DOI: https://doi.org/10.1145/248603.248616

• Chen, Hsinchun, Chiang, Roger H. L. and Veda C. Storey. 2012. “Business Intelligence and Analytics:
From Big Data to Big Impact”. MIS Quarterly 36 (4): 1165–1188.

Data scientists will no doubt encounter BI in their work. It is an important part of the broader data ecosystem,
but itself is not data science. Whereas BI is focused on monitoring and reporting (i.e., describing the past),
data science focuses on inference and making predictions for the future. Nonetheless, both disciplines can
benefit from data warehousing and ETL.

7While we borrowed the term ETL to describe data processing earlier in the chapter, ETL has its origins in BI and data
warehousing applications.

https://doi.org/10.1145/248603.248616

Chapter 5

Record Linkage

5.1 Edward Kennedy, Bill de Blasio, and Bayerische Motoren
Werke

During the summer of 2004, U.S. Senator Edward “Ted” Kennedy told the Senate Judiciary Committee that
he was stopped at the airport five times in March and April of that year (Goo 2004). When attempting
to check in at the airport, airlines staff would refuse to issue a ticket. When pressed as to why, staff were
unable to offer a justification despite the senator’s 42 years of flying through East Coast airports. Eventually,
supervisors would override the hold-ups. It was later revealed by the Transportation Security Administration
(TSA) that the senator’s name was on the no-fly list—a list maintained by the United States federal govern-
ment’s Terrorist Screening Center (TSC) that indicates who is disallowed from boarding commercial aircraft
to and from airports in the United States (Burns 2012). At the time, airlines were given the responsibility of
stopping individuals from boarding planes if a match was found, but as the underlying data used to create
the list was classified and sensitive, airlines were given limited identifying information such as the names of
persons of interest. It so happened that the name “Edward Kennedy” was on the list—a generic alias used
by terrorist organizations. The name is also exceedingly common. A LinkedIn search conducted in mid-2019
found 8,023 people who go by the name “Edward Kennedy”, thus it should not be a surprise that one of
the most prominent Congressmen in the US was flagged as a possible no-fly list suspect when screened only
on first and last name. The senator’s experience is a classic case of mistaken identity—when an entity is
incorrectly identified due to imprecise or insufficient information.

It is easy to misidentify a person based on their name and even easier to miss if an individual maintains
an abundance of identities. The 109th Mayor of New York City Bill de Blasio, for example, was not always
known as Bill de Blasio. In fact, he has changed his name twice and has had three legal names, including
Warren Wilhelm Jr., Warren de Blasio-Wilhelm and Bill de Blasio (Smith 2013). His current name only first
appeared in 1990 as a working name and was made official through a court petition in 2001. In addition, his
close network addresses him as Billy (Wolper 2012). While his names are well covered in the press, it may
be challenging to piece together his history if his other aliases are not already linked to the same entity.

Name changes are quite common throughout society. Some people may choose to change part of or their
entire name at major life events such as marriage, or more clandestine encounters with witness protection.
Nicknames (e.g., Bob = Robert, Dick = Richard, Jen = Jennifer) and stage names (e.g., George Michael =
Georgios Kyriacos Panayiotou, Stevie Wonder = Stevland Hardaway Judkins) are common place. Organiza-
tions regularly update their brands by changing their logo and how they refer to themselves (e.g., Bayerische
Motoren Werke = BMW, Klynveld Peat Marwick Goerdeler = KPMG, Defense Advanced Research Projects
Agency = DARPA). Nonetheless, reconciling entities is a fundamental part of any data project, enabling
profound insights: it allows record linkage to be conducted on two or more datasets so they can be matched,
thereby enriching the story about any single entity. If done well, record linkage can help answer questions
that are central to operating organizations such as

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_5

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_5

62 CHAPTER 5. RECORD LINKAGE

• Two companies just merged and the executives need a new company-wide marketing strategy. What is
the overlap in the customer base? Are the customers similar? Can services be cross-sold, and to whom?

• Suspected terrorists are up to no good. Can knowing all their aliases prevent them from getting on a
plane?

• A jail is reviewing its logs. How many people recidivate more than once per year? What policy treat-
ments minimize recidivism?

• In a genetics lab, can two nucleotide sequences be matched?
• A policy analyst gains access to social services records from multiple agencies. What can be learned

about service users when examining all of their touches across the social services system?
• Two polling firms have two different polling universes. Do their surveys cover the same communities?

Do their results tell the same story?

Despite the potential gains of record linkage, we cannot forget that linkage can easily be botched if not done
so with careful planning and deliberation. In this chapter, we lay out principles of linking data efficiently
and accurately. We begin by describing basic concepts of data linkage, then illustrate the mechanics of
deterministic and probabilistic record linkage. The chapter closes with an example that links two real-world
international sanctions lists.

5.2 How does record linkage work?
Flavors of record linkage. Record linkage aims to solve the following problem: given an entity i, find all
ways to uniquely identify i in any set of information. We should be able to link an entity’s records across two
or more datasets and enrich our insights at an individual level. If done well, security agencies should be able
to accurately identify which Edward Kennedy is a terrorism suspect while sparing innocent bystanders. If
done well, an e-commerce company should be able to have a full picture of purchasing activity from multiple
vendor databases.

The matching process begins with pre-processing data in which typographical formats are standardized
(e.g., punctuation, capitalization, spacing) and the concepts captured in each field are conformed (e.g., date
information is parsed into its month-day-year components). Simple changes to identifying fields like first
name, last name, and birth date improve the chance of character-by-character matches or exact matches.
However, some identifiers have more complicated spelling and recording errors that require approximate
matching through comparison functions. Names like “Culbert” and “Colbert” have a higher chance of being
the same than the name “Cuthbert”. Comparison functions cast a wider net in making connections. At this
stage, records can be de-duplicated using the cleaned identifying fields.

Beyond the preparatory steps, two record linkage strategies dominate the discipline. The simpler, more
common approach is deterministic record linkage, in which a set of unique identifiers are used to match records
character-by-character. A set of rules typically dictates which fields are matched and in what order, chasing
both common and edge cases. A deterministic strategy could first search for exact matches among identifying
fields (e.g., full name), followed by combination of identifiers with partial information (e.g., first initial, last
name, and date of birth). Despite their conceptual simplicity and ease of implementation, deterministic
methods have a number of shortcomings. Developing matching rules can be an artisanal affair, requiring
a substantial time investment to adjust to each additional dataset. Furthermore, an exact match can be
overly restrictive given spelling errors, thereby leading to many missed matching opportunities. Lastly, while
some identifying fields possess greater identification power than others, deterministic methods ignore their
truthiness, giving all fields equal weight regardless of their quality.

A sophisticated, more computationally intensive alternative is probabilistic record linkage focused on calcu-
lating the probability that any two record pairs are a match. Given two datasets with nA and nB records,
comparison functions evaluate all combinations of potential matches (nA × nB) based on identifying fields
and calculate a probability that a given pair of records are a match. A threshold is tuned to separate likely
matches from non-matches. However, nA × nB possibilities can be an awfully large number of matches,
especially in the age of big data. To reduce the search space and simplify the linkage process, matching can
employ blocking that stratifies data, then matches stratum of records to reduce the number of candidate

5.3. PRE-PROCESSING THE DATA 63

pairs, then matches within each stratum using fields with more precise identifying information. Imagine
being tasked with linking two mailing lists collected by two companies reflecting consumer activity in the
past month. From a normative lens, an individual residing in New York probably should not be matched with
a record from Montana, thus matching should be contained to matching states, which in turn reduces the
number of potential matches that are considered. While probabilistic record linkage seems more technically
complicated, it also requires far less human overhead.

Relational Models. An analyst conducting deterministic record linkage has a list of 1000 people A and
another list of 3000 people B. The output is a list of n = 3000000 people—there are more records than in
either of the input lists! What happened? It is no coincidence that the table contains exactly the product
of 1000 × 3000, suggesting a failure to de-duplicate the data. In fact, inadequately de-duplicated data can
actually increase the number of duplicates during the joining process and run the risk of a Cartesian product
in which each record in table A is matched with every row in B and vice versa. Joins that result in Cartesian
products are also a form of many-to-many (m:m) matches that rarely have any practical use (see Figure
5.1). Furthermore, when working with large datasets, simple joins become unnecessarily time-consuming as
the computer matches every record, then outputs an inordinate number of duplicates.

When matching data, it is worth thinking about the relational model, or how two sets of data should relate
and combine with one another. For the most part, analysts think of matching relationships in terms of one-
to-one (1:1) and one-to-many (1:m) matches. A one-to-one match occurs when any record in A can be joined
with at most one and only one record from B. For example, if two social welfare providers wanted to better
understand what their users need, they may match unique identifiers (e.g., social security numbers) from
their respective user lists and take a look at the one-to-one relationships (overlaps) as well as the unmatched
records. A one-to-one match would also apply when matching a passenger on a flight to the no-fly list.

A one-to-many match occurs when one record in X is related to many records in Y . It is often applied in
the context of relating an entity to its history over time. The suspect of a crime, for example, may have
their DNA tested and matched with blood samples collected from multiple unsolved cases. A query for a
frequent international traveler passing through border control will turn up a history of multiple trips. A tax
filer should have a one-to-many match with multiple previous tax returns.

Record linkage requires a surprising degree of clarity in one’s analytical objectives—without knowing precisely
how you will use the data, a match may produce misleading results.

Figure 5.1: Illustration of how the uniqueness of an identifier affects the number of possible matches for each
record.

5.3 Pre-processing the data
Humans can spot and mentally adjust for imperfections in text. Computers, on the other hand, need to
be explicitly programmed to do so. Text standardization techniques, many of which covered in the previous
chapter, play a critical role in efficient, scalable, and accurate record linkage. The strategy needs to be robust,
able to harmonize identifiers not only in your dataset, but in any other dataset. At a minimum, basic text

64 CHAPTER 5. RECORD LINKAGE

Table 5.1: A pair of tables that contain information on individual filers (filers table) and tax filing data
(filings data).

Filers Table Filings Table
first.name mi last.name dob first.name last.name birth.year filing.year income

Arthur C. Duran 9/2/1956 Arthur duran 1956 2010 73000
alex NA Coyle 10/12/1965 Arthur Duran 1956 2011 75400
Guy N. Ferdinand 5/2/1930 Gerak Jaffa 1946 2010 102142
Franz O. Li 7/23/1985 JET FERDINAND 1945 2010 231442
Jet X. Ferdinand 3/8/1945 ALEX COYLE 1965 2010 66030
Richard E. Hawking 10/10/1951 Alex Coyle 1965 2011 42123
richard e __Hawking 10/10/1951 Alex coyle 1965 2012 54285
Stephen T. Colbert 5/13/1964 stephen colbert 1964 2010 320140
Stephen T. Culbert 5/13/1964 stephan colbert 1964 2012 520120
Gerak G. Jaffa 1/6/1946 Richerd HAWKING 1951 2010 84200

standardization will consider typographical formatting and conforming of measurement concepts as will be
described below.

Let’s read in data on hypothetical tax filers (“filers table”) with their tax filings history (“filings table”),
a sample of which is presented in Table 5.1. For the remainder of this chapter, we will illustrate the matching
process using this pair of hypothetical datasets.
Load readr package
pacman::p_load(readr)

Load person and filings tables
filers <- read_csv("tables/ch5_tab_person.csv")
filing <- read_csv("tables/ch5_tab_filings.csv")

Character standardization. A cursory scan of the filers table finds a number of typographical errors.
Our pre-processing objective should be to ensure that names that are visibly the same are represented the
same. Text characters can be standardized by stripping spaces that come before and after strings known
as white space (str_trim), removing unnecessary punctuation and spaces (str_remove_all with a regex
pattern [[:punct:][:space:]]), then converting strings to lower case (str_to_lower). As the procedure
will be applied and re-applied, it is a good idea to write a re-usable function that strings together these three
stringr package functions:

textStandard <- function(string_val){
#
Basic text standardization
Args:
string_val = a string or string vector
Returns:
Transformed, trimmed, lower case strings
#

require(stringr)

output <- string_val %>%
str_remove_all("[[:punct:][:space:]]") %>%
str_to_lower() %>%
str_trim()

5.3. PRE-PROCESSING THE DATA 65

Table 5.2: Standardized text.

Filers Table Filings Table
FN LN FN LN

arthur duran arthur duran
alex coyle arthur duran
guy ferdinand gerak jaffa
franz li jet ferdinand
jet ferdinand alex coyle
richard hawking alex coyle
richard hawking alex coyle
stephen colbert stephen colbert
stephen culbert stephan colbert
gerak jaffa richerd hawking

}

textStandard is then applied to the first.name, middle.initial, and last.name fields using a for-loop
to minimize code redundancy. The transformed text are stored as new fields with the prefix “cleaned” to
preserve the provenance of the data.
Standardize first three columns in filers table
person_identifiers <- colnames(filers)[1:3]
for(i in person_identifiers){
filers[[paste0("clean.", i)]] <- textStandard(filers[[i]])
}

Standardize first two columns in filings table
filing_identifiers <- colnames(filing)[1:2]
for(i in filing_identifiers){
filing[[paste0("clean.", i)]] <- textStandard(filing[[i]])
}

While this simple cleansing step can reconcile names like “Richard E. Hawking” versus “richard e __Hawk-
ing” to “richard e hawking” as seen in Table 5.2, it is not effective for variations in spelling like “Stephen
Colbert” versus “Stephan Colbert”. Later this chapter, we will introduce fuzzy matching techniques that
overcome this obstacle.

Conforming concepts. Some fields contain similar information with differing degrees of precision. Geo-
graphic information such as US zip codes can be reported with five digits or the more specific nine-digit
format; birth date information can contain only the year while other fields include the month-day-year; and
names of places may be reported in full or abbreviated. In any of these cases, the data need to be con-
formed to reflect the same concept with the same degree of precision, typically using the lowest common
denominator.

For example, the filers table contains birth date information (month, day, and year) cannot be precisely
matched with the filing table that only contains the year of birth. By extracting the year of birth from
the birth date field using lubridate, we can conform the birth date information and facilitate a match.
Load package
pacman::p_load(lubridate)

Extract year and assign a variable of the same name.
filers$birth.year <- as.numeric(year(mdy(filers$dob)))

66 CHAPTER 5. RECORD LINKAGE

Table 5.3: Duplicate records.

first.name last.name birth.year filing.year income clean.first.name clean.last.name

Maxine Cho 1987 2012 109500 maxine cho
MaxineJ Cho 1987 2011 139500 maxinej cho
Alex Coyle 1965 2011 42123 alex coyle
Alex Coyle 1965 2011 42123 alex coyle
.
.
.
Alex Coyle 1965 2011 42123 alex coyle

filing$birth.year <- as.numeric(filing$birth.year)

5.4 De-duplication
Duplicate records can be Achilles’ heel of a data science project. They can easily overemphasize inconse-
quential patterns in the data. When online applications collect data, for example, users may click the submit
button multiple times, creating a disproportionate number of duplicate records. To a rookie data analyst,
there may appear to be an enormous amount of activity when the majority of records are duplicates. The
problem can be further compounded when an attempted match results in a Cartesian product. De-duplicating
records is a crucial step in keeping an accurate accounting of events.

If we take a closer look at the filings in Table 5.3, we find an inordinate number of duplicate records for 2011
tax filings for “Alex Coyle”—21 in all! Let’s remove duplicates by specifying a primary key—an identifier
or combination of identifiers that uniquely identify each record in a table. The primary key can be a single
unique identifier such as a social security number, when available. In this case, one is more likely to specify
a composite key, or an identifier constructed from multiple fields used in concert. For example, we could use
combinations of

• First Initial + Last Name + Date of Birth.
• First Name + Last Name + Year of Birth.

Each composite key achieves a different degree of uniqueness. Social security numbers would have higher
uniqueness than first and last name alone. The choice of a primary key will invariably require some trial and
error.

The key should reflect the principal unit of analysis contained in each table. The filers data, for example,
captures person-level information. A natural composite key could contain clean.first.name, clean.last.name,
and birth.year. The filings data reflects tax filings over time for individual people, thus the composite
key could be clean.first.name, clean.last.name and birth.year, and filing.year. Notice that three
of four fields can be used as the basis of a 1 : m match.

Having defined the keys, de-duplication is as simple as applying the distinct function in the dplyr package.
The function expects a data frame along with a list of identifying fields. Each table has been reduced in size,
with the filing table reduced by 40% in size and a lesser reduction observed in the filer table.
Load dplyr package
pacman::p_load(dplyr)

De-duplicate filing
f_table <- filing %>%
distinct(clean.first.name, clean.last.name, birth.year, filing.year)

5.5. DETERMINISTIC RECORD LINKAGE 67

Table 5.4: Types of joins in the dplyr package.

Join Type Description

left_join Left outer join returns all rows of X along with any matched rows of Y and its columns.
right_join Right outer join returns all rows of Y along with any matched rows of X and its columns.
full_join Full outer join returns all rows of X and Y with both matched and unmatched results.
inner_join Inner join returns all rows of X and Y that were matched.
anti_join Anti-joins return rows of X that did not match Y.
semi_join Semi-joins return rows of X that matched Y, retaining only X columns.

Deduplicate filers
p_table <- filers %>%
distinct(clean.first.name, clean.last.name, birth.year)

The ideal process would de-duplicate data once. In practice, we often do not truly know which records are
duplicates. De-duplication thus requires vigilance and constant improvement throughout the life of a dataset.

5.5 Deterministic record linkage
With each table processed and de-duplicated, we can now try our hand at deterministic record linkage.
However, before doing so, it is helpful to think about what precisely we hope to achieve from the linkage
exercise. Do we want to find the intersection or overlap of two datasets? Do we need to find which records
are not matched? Each of these goals can be addressed by a different join operator .

Join Operators. Each join is conducted pairwise between two sets of data. The first dataset X is referred
to as the left-hand side table. This typically is the table with the largest size universe and sometimes referred
to as the backbone to which all tables are joined. We cover backbones in greater detail later in this section.
The dataset Y is to be joined to X and is referred to as the right-hand side table. Join operators can produce
four types of outputs (see Figure 5.2):

• A Left Outer Join (or “Left Join”) shows which records in Y overlap with X while retaining all records
from X. In practice, left joins help us see how much of a sample (Y) overlaps with a known population
(X). For example, the response rate of a survey can be calculated from a left join where X is the
sampling frame and Y are records from respondents.

• A close cousin of the left join is the Right Outer Join (or “Right Join”), which identifies which records
in X overlap with Y while retaining all records from X.

• Inner Joins only retain matched records. In set theory, this is the equivalent to an intersection X ∩ Y .
In practice, inner joins are a quick way to identify overlapping records. If the no-fly list and a passenger
list were joined, for example, TSA and airlines staff would be most interested in the inner join.

• Full Outer Joins (or “Full Join”) retain all records from both datasets X and Y , regardless of whether
a record is matched. In set theory, this is the equivalent of a union X ∪ Y . The output is the most
comprehensive accounting of records, showing the overlap and coverage gap, which in turn can help
understand sources of differences between datasets. For example, two organizations that want to com-
pare their user bases may want to conduct a full join to produce an ecosystem-level view of their
reach.

Each of these join operators can be applied using the merge function in base R, but more conveniently through
the dplyr package (see Table 5.4). In addition to the four types of joins described above, dplyr implements
filtering joins such as anti-joins that return unmatched records and semi-joins that return matched records
in Y with the columns from X.

Match rules. Deterministic record linkage is dependent on constructing match rules by creatively combining
join operators and intuition on the usefulness of match variables. The rule of thumb is to first match using

68 CHAPTER 5. RECORD LINKAGE

Figure 5.2: Types of joins. Diamonds represent datasets.

the most precise information—using more identifying fields can give us more confidence in the accuracy of
the match. As matches are exhausted with the “best” information, follow-up waves of matching loosen the
precision of match variables, allowing the use of approximate identifiers (e.g., Soundex, partial names).

Suppose our objective with the tax data is to report on the following:

• What proportion of the people in the filers table are in the tax filings table?
• What proportion of the people in the tax filings table are in the filers table?

These questions sound the same. While the numerators will be the same (number of matched records), the
denominators will differ as they are drawn from different datasets. We walk through a simple three-step
process below. First, we de-duplicate both tables ensuring the unit of measure is distinct people.
De-duplicate the filings by person
people <- f_table %>%
distinct(clean.first.name, clean.last.name, birth.year,

.keep_all = FALSE)

De-duplicate filers
tax <- p_table %>%
distinct(clean.first.name, clean.last.name, birth.year,

.keep_all = FALSE)

Next, we add a dummy variable to each table, which will come in handy for analyzing which records were
matched after conducting a join.
Create indicator
people$flag.p <- 1
tax$flag.t <- 1

Match Wave #1. Our first wave of matching relies on all available identifying variables, returning the results

5.5. DETERMINISTIC RECORD LINKAGE 69

Table 5.5: Unmatched records.

Birth Year First Name Last Name

1964 stephan colbert
1951 richerd hawking
1924 rube amor
1994 pedro oconnell
1987 maxine cho
1987 maxinej cho

of an inner join (inner_join)—only matching records are returned. If field names are not supplied, R will
assume that variables with the same names in each dataset are match keys. The output table contains five
columns: our three identifiers (first name, last name, and year of birth) along with two dummy variables.
Inner join
xy <- inner_join(people, tax)

Now, we can estimate the proportion of people who have filed any of their previous taxes (nmatches
npeople

) is slightly
over 57%, whereas the proportion of people whose taxes were filed and are captured on the person list
(nmatches

ntax
) is approximately 89%. In other words, there is a data coverage gap.

How much of people table has been matched
sum(xy$flag.p == xy$flag.t, na.rm = T) / nrow(people)

How much of the tax filings table has been matched
sum(xy$flag.p == xy$flag.t, na.rm = T) / nrow(tax)

An anti-join also can help assess the quality of the pre-processing and offer clues for how to improve the
match rate. Our last statement retrieves a list of unmatched records, uncovering that at least two entities may
have duplicates due to spelling errors (Table 5.5). Such a result is not entirely surprising when conducting
deterministic record linkage as the method is relatively brute force, ignoring the spelling variations that are
all too common in real-world data. We bridge some of these gaps when considering fuzzy matching techniques
and probabilistic record linkage later in this chapter.
Find unmatched filers
outstanding <- anti_join(people, tax)

Match Wave #2. As a follow-up attempt, we relax the match criteria by using partial information, such as
the first three letters of the first name, last name, and birth year. So that we avoid matching on previously
matched records in the people table, the second wave uses the outstanding persons table. Follow-up was
successful in identifying an additional two names, bringing the total matches to n = 10.
First three letters
outstanding$clean.3fn <- str_sub(outstanding$clean.first.name, 1, 3)

tax$clean.3fn <- str_sub(tax$clean.first.name, 1, 3)

Inner join
xy2 <- inner_join(outstanding, tax,

by = c("clean.3fn", "clean.last.name", "birth.year"))

At this point, the analyst would need to decide how to treat unmatched records. Is this match result reason-
able? Should unmatched values be imputed or left alone? Should another round of matching be attempted?
Perhaps comparison functions can help squeeze a few more matches from the data.

70 CHAPTER 5. RECORD LINKAGE

5.6 Comparison functions
An exact match should arguably merit our greatest confidence, but it will undoubtedly leave some portion
of the data unmatched. A spelling error of even one character, such as “Stephen Colbert” versus “Stephen
Culbert”, can mean the difference between a match and a miss. Other than human intervention, a fuzzy
matching strategy can help. Rather than searching for exact matches on an unique identifier, comparison
functions enable fuzzy matching by quantifying the similarities between two strings while minimizing the
influence of individual spelling variations. Here, we highlight two approaches: edit distances and phonetic
algorithms.

5.6.1 Edit distances
The names “John Smith” and “jon Smith” are quite similar, yet software are unable to make the connection.
Humans, on the other hand, can spot similarities. The pair of strings share an overwhelming majority of
characters and only a couple of edits are required to convert one name to the other, such as turning the
capital “J” to lower case and removing the “h”. These qualities are suggestive of a match, or at least that
these names are related. Alternatively, we can quickly see that the names “John Smith” and “Nikolai Rimsky-
Korsakov” are nothing alike. These string comparisons encapsulate the spirit of edit distances—quantifying
similarity as the number of transformations required to convert one string to the other. It does not take
much to see how edit distances can apply in other contexts beyond name matching and spell-checking. In
bioinformatics, edit distances can quantify how similar two gene sequences are. In sociology, edit distances
quantify and relate the trajectories of people’s lives. The potential uses and implications of edit distances
are far reaching.

Levenshtein Distance is one of the most common edit distances that counts the number of additions, substitu-
tions, or deletions that are required to transform one string to another string (Navarro 2001). The algorithm
calculates distance by performing a systematic search for the minimum number of edits required to transform
one string into another. In other words, there might be many ways to transform one string into another,
but we are interested in only the most efficient path. Many of the most popular baby names as published
by the US Social Security Administration (SSA) have the same pronunciation but different spellings (Social
Security Administration 2017). Using Levenshtein distances, we can quantify their similarity:

• Maya: Mya (1), Myah (2), Miya (1)
• Muhammad: Mohamed (3), Mohammed (1), Mohammad (1)
• Cameron: Camron (1), Kameron (1)
• Catherine: Katherine (1)
• Lily: Lillie (3), Lilly (1)

Let’s see Levenshtein distances in action when comparing two vectors of names inputs and ref_table.
Using the stringdist package, the stringdistmatrix function calculates the edit distance between each
combination of string values drawn from a pair of vectors, providing facility to specify the type of edit
distance through the method argument. For Levenshtein Distance, we simply specify method = "lv". As seen
in Table 5.6, the name “Bill” is most similar to “Billy” with only one required edit. “Billie” and “Willy”,
both nicknames that are also derived from “William”, also have relatively similar Levenshtein distances.
However, the name “Lill” is not conceptually related yet it has the same Levenshtein distance as “Billy”.
What happened?
Load library
pacman::p_load(stringdist)

Two sets of names
inputs <- c("Bill", "Warren")
candidates <- c("Billy", "Lill", "Wally", "Willy",

"Billie", "William", "Georgie")

Calculate Levenshtein distances
bill_dist =stringdistmatrix(inputs, candidates,method = "lv")

5.6. COMPARISON FUNCTIONS 71

Table 5.6: Levenshtein distances for "Bill" and "Warren".

Billy Lill Billie Willy Wally William Georgie

Bill 1 1 2 2 3 4 7
Warren 6 6 6 5 4 6 6

Table 5.7: Jaro-Winkler distances for “Bill” and “Warren”.

Billy Lill Billie Willy Wally William Georgie

Bill 0.033 0.167 0.056 0.217 0.367 0.274 1.00
Warren 1.000 1.000 0.556 0.476 0.317 0.493 0.46

While Levenshtein distance is widely used for applications like spell checking, they were designed with a
particular concept of similarity in mind. The comparison function’s assumptions have significant bearing on
whether it is appropriate in different contexts.

The Jaro-Winkler Distance (Winkler 1990) is another widely used edit distance that focuses on the overlap
between strings and the similarity of prefixes. The measure is an extension of Jaro Distance dj as

dj =
{

0 if m = 0
1
3 (m

s1
+ m

s2
+ m−t

m in all other cases

where |s1| and |s2| are the number of characters in a pair of strings, m is the number of common characters
that are in common between the string pair, and transpositions t are defined as �max(|s1|,|s2|)

2 − 1�. In effect,
the measure quantifies the overlap given a pair of string values, normalized on a range between 0 and 1 in
which the latter indicates an exact match. A Jaro Distance can also be represented as a Jaro Similarity by
flipping the scale 1 − dj .

The Jaro-Winkler (JW) distance extends the Jaro distance to account for similarities in the prefix characters
of a string. The formula adds additional terms to give weight to the beginning of strings:

djw = dj + lp(1 − dj)

in which the Jaro distance dj is adjusted by the length l of a common prefix at the beginning of a
string (maximum is four characters). The scalar p adjusts the importance of similar prefixes to a range of
0 ≤ p ≤ 0.25 in which p = 0 indicates that prefixes are unimportant for the comparison in question. Like
Jaro similarities, JW distances often can be reported as similarities, defined simply as 1 − djw where 0 is an
exact match.

Let’s now re-examine the “Bill” vector by setting p = 0.125, which is equivalent to placing half the weight
on prefix comparison. The result is notably improved (Table 5.7), ranking similar looking names toward the
top of the list.
Calculate Levenshtein distances
bill_dist =stringdistmatrix(inputs, candidates,method = "jw",p = 0.125)

5.6.2 Phonetic algorithms
The names “Billy” and “Billie” sound the same as do “John” and “Jon”, yet their edit distances are similar
but not exactly the same. Phonetic algorithms are designed to transcend spelling differences and emphasize
the role of pronunciation—if two names sound the same, they should be coded the same. Soundex, for
example, was developed to identify homophones, which are names that are pronounced the same but may

72 CHAPTER 5. RECORD LINKAGE

Table 5.8: Soundex letter encodings.

Letter Encoded Value

B, F, P, V 1
C, G, J, K, Q, S, X, Z 2
D, T 3
L 4
M,N 5
R 6

have different spelling. The trick is to transform a string into a phonetic encoding that retains information
on comparable sounds while removing minute deviations in spelling (“Soundex System” 2007). Despite its
creation in the early 20th century, the steps that underlie Soundex are remarkably robust. Below are the
basic encoding steps:

1. Keep the first letter of a string.

2. Drop the following letters: A, E, I, O, U, H, W, and Y.

3. For each of the following letters, encode with the associated number as seen in Table 5.8:

4. If a name has double letters, drop one (e.g., Keep one r in Torres).

5. If sequential number encodings are the same, keep only one. The name “Pfister”, for example, is coded
as P236 (P, F ignored, 2 for the S, 3 for the T, 6 for the R). The name “Jackson” is coded as J250 (J,
2 for the C, K ignored, S ignored, 5 for the N, 0 added).

6. If a name has a prefix (e.g., Van, Di) that is separated by a space, encode the name with and without
the prefix and use both sets of encodings for search purposes. For example, “Van Doren”, “Di Caprio”,
etc.

7. Consonant separators follow two rules: (1) If the letters “H” or “W” separate two consonants with the
same Soundex code, the consonant to the right of the vowel is not coded. (2) If a vowel (A, E, I, O, U)
separates two consonants that have the same Soundex code, the consonant to the right of the vowel is
coded.

The output of Soundex is a four character code: the first character is a letter followed by three numbers—
essentially compressing distinguishing sounds into a concise form. It is important to note that Soundex has
a number of known weaknesses. The procedure was developed for Anglophone names assumptions, thus it
will have difficulty with different transcription systems (e.g., Chinese and Russian names), silent consonants
(e.g., Deighton), and name equivalence (e.g., Jeff and Jeffrey) among others. A number of alternative phonetic
algorithms, such as metaphone, Caverphone, and the New York State Identification and Intelligence System
(NYSIIS), have been developed over the years to improve the accuracy and generalizability of encodings.

Let’s see how the encodings perform on our “Bill” data using the phonics package, which implements a
number of phonetic algorithms such as Soundex, Metaphone, NYSIIS, and Caverphone. We again compare
the name “Bill” with a vector of names using both phonetic encodings and edit distances (see Table 5.9).
Once again, Levenshtein distances are shown to be insensitive to the prefixes, whereas Jaro-Winkler distances
offer a visible improvement in identifying likely matches. In contrast, phonetic algorithms provide a cluster
label—all names that sound similar share the same encoding. The names “Billy” and “Billie” are perfectly
matched with “Bill” when using Soundex (B400) and Metaphone (BL). “Wally” and “Willy” share the same
encodings (W400 and WL), but these names originate from different proper names (Walter versus William).
These results illustrate that the approximations made by phonetic algorithms can uncover missed matches,
but also increase the risk of mismatches.

5.6. COMPARISON FUNCTIONS 73

Table 5.9: Encodings and distances relative to the name "Bill".

Names Levenshtein Jaro-Winkler Soundex Metaphone NYSIIS Caverphone

Bill 0 0.000 B400 BL BAL P11111
Billy 1 0.033 B400 BL BALY PL1111
Lill 1 0.167 L400 LL LAL L11111
Billie 2 0.056 B400 BL BALY PL1111
Willy 2 0.217 W400 WL WALY WL1111
Wally 3 0.367 W400 WL WALY WL1111
William 4 0.274 W450 WLM WALAN WLM111
Georgie 7 1.000 G620 JRJ GARGY KK1111

Load phonics package
pacman::p_load(phonics)

Names
bill <- c("Bill", "Billy", "Lill", "Billie",

"Willy", "Wally", "William", "Georgie")

Apply algorithms
stringdist("Bill", bill, method = "jw", p = 0.125)
stringdist("Bill", bill, method = "lv")
soundex(bill)
metaphone(bill)
nysiis(bill)
caverphone(bill)

5.6.3 New tricks, same heuristics
With these new fuzzy tricks, we should ask how does one match using edit distances and phonetic encodings
given the fuzziness?. The last mile of fuzzy matching requires judgment calls and heuristics—a kind of
premium version of deterministic record linkage. For example:

• Should the shortest distance be considered to be a match or the shortest distance within a threshold?
• If any values are within the threshold, what if two names have the same distance value?
• If two or more phonetic encodings are the same, which is right?

These fuzzy matching methods are new tricks that can increase our match rate, but they also come with the
added risk of increasing the false matches rate. One approach to place guide rails on the matching process
is Blocking, which reduces the search space to plausible candidates, then only conducts matching on records
whose fields exactly match on blocking fields. These fields contain accurate but less specific information,
like geography, sex, first initial of name, phonetic encodings among others. Once the search space has been
narrowed, then edit distances can rank potential matches.

We put this logic to the test in the example below, searching for matches for names in the inputs vector
drawing from candidates. Soundex is applied to create a blocking variable, then the amatch function in the
stringdist package retrieves the index position of the closest matching names as measured by Jaro-Winker
similarly setting a fence of maxDist = 0.2. The match results are packaged into a data frame for review.
Step 1: Soundex encodings
soundex_inputs <-
soundex(inputs)

74 CHAPTER 5. RECORD LINKAGE

soundex_candidates <-soundex(candidates)

Step 2: Match within blocks
out <- data.frame()

Loop through each input name
for(i in 1:length(inputs)){

Subset to a block of soundex
short_list <- candidates[soundex_candidates == soundex_inputs[i]]

Match using JW distance
res <- amatch(x = inputs[i], table = short_list,

method = "jw", p = 0.125, maxDist = 0.2)

Store results
out <- rbind(out,
data.frame(original = inputs[i],
matched = short_list[res]))

}

It may seem reasonable to employ a set of human-tuned heuristics to match data, but consider this: datasets
can have many variables on which matches can be made. In real-world data, data are almost certainly dirty.
Should all variables still be treated the same? Also, how does one use multiple matching variables in a fuzzy
framework? The code for the tax example will quickly become more complex, filled with judgment calls. If
inaccurately matched, there’s a social cost of producing data with false match and not producing enough
matches—we can introduce a bias into our data, which in turn biases insights, and biases policy.

5.7 Probabilistic record linkage
Probabilistic matching cranks up the sophistication of matching, removing the need for complicated heuristics
and human overhead while accounting for variable data quality. The most popular framework, as described
in Fellegi and Sunter (1969), calculates the probability of a match for every possible pair of records drawn
from two sets of data given the agreement among matching variables. The match probability can then serve
as the basis for classifying which records are likely matches and which are not. In other words, probabilistic
record linkage can automate a significant proportion of the data joining process, but automation usually
requires more complex machinery to work in the background.

There are many moving parts to the framework. For simplicity, we lay out the approach through our filers
X and filings Y data. Each sample has a sample size, nX and nY , which means we compare up to nX × nY

pairs of records. For each record pair (i, j), where i is in X and j is in Y , we compare each of k match
variables and store their agreement in a comparison vector γ(i, j):

γ(i, j) =

⎡
⎢⎣

γ1(i, j)
...

γk(i, j)

⎤
⎥⎦

Each value in γ(i, j) is a discrete label such as “Same”, “Different”, or “Similar”, classified from setting
thresholds on similarity measures. In our example, we compare birth year (Year), first name (FN), and last
name (LN) using Jaro-Winkler similarity, then set thresholds of 0.08 and 0.12 that discretize each comparison
as discrete labels. For each pair, the set of three agreement labels is stored in γ(i, j). For example, in Table
5.10, a pair of names like “Stephen Colbert” and “Arthur Duran” would be stored as

5.7. PROBABILISTIC RECORD LINKAGE 75

Table 5.10: Comparison and classification of record pairs.

filings table Filers Table JW Distance Agreement
Year FN LN Year FN LN Year FN LN Year FN LN

1964 stephen colbert 1985 franz li 0.250 1.000 0.452 Different Different Different
1964 stephen colbert 1964 stephen culbert 0.000 0.000 0.083 Same Same Similar
1964 stephen colbert 1956 arthur duran 0.125 0.460 1.000 Different Different Different
1964 stephen colbert 1965 alex coyle 0.104 0.536 0.157 Similar Different Different

γ(i, j) =

⎡
⎢⎣

γFirst Name(i, j) = Different
...

γLast Name(i, j) = Different

⎤
⎥⎦

Some datasets will inevitably have missing values that cause errors in matching. In deterministic record
linkage, for example, records with missing values may be dropped from consideration, potentially skewing
insights from the data. We can keep track of missingness using an additional missingness vector δ(i, j),
marking which variable k in record pair (i, j) is missing values (δk(i, j) = 1) or have complete values
(δk(i, j) = 0).

Once again, we find ourselves with the problem of deciding which records are matches M non-matches U . Per
Enamorado, Fifield, and Imai (2019), the comparison and missingness vector are inputs into an estimation
procedure to tease out the chance that a pair of records is a match (ξij):

ξij = Pr(mij = 1|δ(i, j), γ(i, j))

The precise calculation involves estimating a model through an Expectation-Maximization (EM) algorithm,
incorporating the probability πkm of the agreement level in variable k given a match m and the match
probability of all comparison pairs λ. For a more in-depth treatment, see Enamorado, Fifield, and Imai
(2019). A probability is flagged as a match by setting a threshold S. Values above S (ξij ≥ S) are considered
to be matches, whereas values below are non-matches (ξij < S).

In Practice. In only a few lines of code, the fastLink package rapidly deploys a probabilistic record linkage
model. The example builds on the p_table and f_table from the previous example, using a mix of cleaned
fields (first name, last name, birth year) as well as encoded fields (Soundex first name and last name).
Load fastLink package
pacman::p_load(fastLink)

Augment tables with comparison functions
Filers table
p_table$soundex.first.name <- soundex(p_table$clean.first.name)
p_table$soundex.last.name <- soundex(p_table$clean.last.name)

Filings table
f_table$soundex.first.name <- soundex(f_table$clean.first.name)
f_table$soundex.last.name <- soundex(f_table$clean.last.name)

To get started with matching, the fastLink function scales matching to large datasets. Not only does the
function conduct matching, it makes it easy to examine match quality, tune match thresholds, and retrieve
results. At a minimum, the function expects two data frames and a vector of variable names on which to
match. The developers set a number of sensible defaults:

76 CHAPTER 5. RECORD LINKAGE

• A list of variables need to be specified under stringdist.match if fuzzy matching is desired.
• The string comparison function defaults to Jaro-Winkler distance with the p parameter set as

jw.weight = 0.1. Other distances measures such as Levenshtein and Jaro are also supported.
• The match threshold S can be tuned using threshold.match (default = 0.85).

Matching function
match_results <- fastLink(

dfA = p_table, dfB = f_table,
varnames = c("clean.first.name", "clean.last.name", "birth.year",

"soundex.first.name", "soundex.last.name"),
stringdist.match = c("clean.first.name", "clean.last.name"),
dedupe.matches = FALSE)

With the linkage model trained, we tune the match threshold to maximize the match rate. In this case,
the match probabilities are so high that the choice of threshold has no influence on the match results.
Interestingly, the match rate exceed 100%, which suggests that some matches are m : 1—perhaps two
similarly spelled names were linked to the same entity.

summary(match_results, threshold = seq(0.7, 0.95, 0.05))

knitr::kable(summary(match_results, threshold = seq(0.7, 0.95, 0.05)),
caption = "Linkage rates by threshold.",
booktab = TRUE)

Lastly, matches are returned as a single data frame using the getMatches function. By default, fastLink
will automatically de-duplicate matches, which is not ideal for matching people to transactional records. In
this case, we should retain all tax filings, thus we re-run fastLink and set dedupe.matches = FALSE before
retrieving matches.
Retrieve matches
out <- getMatches(dfA = p_table,

dfB = f_table,
fl.out = match_results)

5.8 Data privacy
Identifying matching records can pose an information exposure risk. In an age where information security and
privacy are constantly at risk, stricter practices need to be developed to safeguard people’s information during
the data science process. After matching records, we advocate for the use of cryptographic hash functions
so that identifiers cannot be plainly read. A hash function is a mathematical algorithm that converts an
arbitrarily long string into a fixed size code known as a hash. Using one of the most commonly available
cryptographic hash algorithms known as “MD5”, we convert an identifier into a unique hash.1 For example,
“Duran Duran” becomes 77d167993f17e0f169e425ddc5b0c1a3.

Simply encrypting an identifier into a hash does not safeguard the information. Hashes can be cracked if
the heuristic is exposed, thus vigilance in data stewardship is a must. We recommend the following steps be
taken:

1. After linkage is complete, construct an identifier vector temp_key.
2. Use the digest function in the digest package to apply the MD5 algorithm to each identifier in each

person and tax filings tables. The digest function will turn any R object into an MD5 hash. As the
digest function can only produce one hash at a time, we use a special apply function sapply to loop
through each value of temp_key to encrypt the unique hashes.

1Hash functions are suitable for within organizational use in a secure environment, but are not safe for de-identifying
individuals in publicly disseminated data.

5.9. DIY: MATCHING PEOPLE IN THE UK-UN SANCTION LISTS 77

3. After the hash is created, delete the person identifiers in the dataset (e.g., first name, last name, etc.)
as well as the temp_key.

By taking these steps, we leave little to no personally identifiable information in the datasets, making a more
secure dataset for analysis. These steps are illustrated in the code below:
Construct identifier using stringr for the person table
temp_key <- paste(p_table$soundex.first.name,
p_table$soundex.last.name,
p_table$birth.year)

Load MD5 hash library
pacman::p_load(digest)
p_table$hash <- sapply(temp_key, digest, algo = "md5")

Keep de-identified information
p_table <- p_table[, c("hash")]
rm(temp_key)

5.9 DIY: Matching people in the UK-UN sanction lists
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch05-record-linkage.Rmd.

Creating and maintaining lists of high-risk individuals and organizations is part of any national security
apparatus. In fact, a number of nations and governing bodies publish such lists of enemies of the state and
their aliases so that companies and people conducting global commerce can follow international sanctions.
For example, a number of countries and international organizations maintain sanctions lists:

• US Consolidated Screening List.
• UK Financial sanctions targets.
• UN Sanctions List.
• EU Sanctions List.

These datasets pertain to the serious business of global security, but also present an opportunity for record
linkage using real-world data. Every day, companies shift through customer lists and marketing lists to
understand their customers. Nonprofit development managers compare the lists of donors to marketing lists
to find potential donors who resemble their current support base. And organizations operating in the interest
of global security compare names of intended recipients of shipments against sanction lists.

For simplicity, we will focus only on the UN and EU lists to learn the extent to which they have common
identified risks. We begin by loading a Rda file containing all watch lists. Note that these lists are constantly
updated, thus the files extracted for this exercise are a snapshot from one point in time.

load("data/watch_lists.Rda")

The watch lists capture similar attributes, but often are organized quite differently. Let’s examine the case
of Saddam Hussein, the former President of Iraq (Table 5.11). Both the EU and UN lists contain his first
name and last name, birth date, and citizenship. There are slight deviations in how the names are recorded,
but we can see how the lists could be matched after basic string manipulation.

Based on visual inspection, the following five fields contain similar information useful for matching: firstname,
middlename/secondname, lastname/thirdname, wholename, and birthdate. Using the procedures laid out
in this chapter, we can easily compare the performance of deterministic record linkage versus probabilistic
record linkage.

Data Preparation. Different organizations treat names differently. Some may concatenate parts of first

https://github.com/DataScienceForPublicPolicy/diys
http://2016.export.gov/ecr/eg_main_023148.asp
https://www.gov.uk/government/publications/financial-sanctions-consolidated-list-of-targets/consolidated-list-of-targets
https://scsanctions.un.org/resources/xml/en/consolidated.xml
http://ec.europa.eu/external_relations/cfsp/sanctions/list/version4/global/global.xml

78 CHAPTER 5. RECORD LINKAGE

Table 5.11: Comparison of EU and UN lists.

EU Variables UN Variables Example

eu.id 2 un.id 172
id 13 rec_type individual
legal_basis 1210/2003 (OJ L169) id 6908048
reg_date 2003-07-07 version_number 1
lastname Hussein Al-Tikriti firstname SADDAM
firstname Saddam secondname HUSSEIN
middlename thirdname AL-TIKRITI
wholename Saddam Hussein Al-Tikri un_list_type Iraq
gender M ref_num IQi.001
title listed_on 2003-06-27
func_role comments
language designation
birthdate 1937-04-28 citizen_country Iraq
birth_place al-Awja, near Tikrit list_type UN List
birth_country IRQ date_updated
passport_number alias Abu Ali
passport_country alias_quality Low
citizen_country IRQ country
pdf_link http://eur-lex.europa.e birthdate 1937-04-28
programme IRQ birthdate_type EXACT

birth_place al-Awja, near Tikrit
birth_country Iraq
passport_number
passport_country
sort_key
sort_key_mod

http://eur-lex.europa.e

5.9. DIY: MATCHING PEOPLE IN THE UK-UN SANCTION LISTS 79

and middle names while others keep them separate. To minimize the influence of recording error, all parts
of a name from the UN dataset are concatenated into a wholename field, similar to the EU data, and
filling any NA value with empty quotes. This will prevent NA values from being treated as “NA” strings. To
establish a baseline for matching performance, we check for possible matches without any additional text
standardization.
Fill empty quotes
eu[is.na(eu)] <- ""
un[is.na(un)] <- ""

Create wholename
un$wholename <- paste(un$firstname, un$secondname, un$thirdname)

Number of overlapping records
print(sum(un$wholename %in% eu$wholename))

Sadly, only $n = $4 records from thousands match. With only a modest level of effort, the textStandard
function from earlier in this chapter can correct for typographical differences. A second attempt at matching
returns much improved results, reaching n = 668 matches.
Clean
un$clean.wholename <- textStandard(un$wholename)
eu$clean.wholename <- textStandard(eu$wholename)

Overlap
print(sum(un$clean.wholename %in% eu$clean.wholename))

Next, the birthdate values also need to be standardized. Some UN records contain YYYY-MM-DD while
others oddly capture minute-level detail (likely a recording error). The EU records are a mix of year and
YYYY-MM-DD along with commentary on the data quality. Using stringr functions, we remove text from
the birthdate fields as well as construct a four-digit birthyear field.
Clean UN to YYYY-MM-DD records
un$birthdate <- str_extract(un$birthdate, "\\d{4}-\\d{2}-\\d{2}")

Remove text from YYYY
eu$birthdate <- str_replace(eu$birthdate, " \\(approximative\\)", "")

Extract birth year using regex and stringr
un$birthyear <- str_extract(un$birthdate, "\\d{4}")
eu$birthyear <- str_extract(eu$birthdate, "\\d{4}")

Deterministic record linkage. Our deterministic linkage strategy starts with the most precise information,
then relaxes matching requirements in each of two subsequent matching waves:

• first: clean.wholename and birthdate;
• second: clean.wholename and birthyear; then
• third: clean.wholename only.

In each wave, we make note of which wave a match was made, giving credit to more precise matches.
Abridged tables
eu_short <- eu[, c("eu.id", "wholename", "clean.wholename", "birthdate", "birthyear")]
un_short <- un[, c("un.id", "wholename", "clean.wholename", "birthdate", "birthyear")]

Match waves
wave_1 <- inner_join(eu_short, un_short, by = c("clean.wholename", "birthdate"))
wave_2 <- inner_join(eu_short, un_short, by = c("clean.wholename", "birthyear"))
wave_3 <- inner_join(eu_short, un_short, by = c("clean.wholename"))

80 CHAPTER 5. RECORD LINKAGE

Combine into master table and de-duplicate
det_key <- rbind(cbind(wave_1[, c("eu.id", "un.id", "clean.wholename")], match = 1),
cbind(wave_2[, c("eu.id", "un.id", "clean.wholename")], match = 2),
cbind(wave_3[, c("eu.id", "un.id", "clean.wholename")], match = 3))
det_key <- det_key[!duplicated(det_key[,1:3]),]

From three waves of matching, a total of n = 676 matches (nrow(det_key)) were identified. This is only
a fraction of the UN list (n = 1046–nrow(un_short)) and the EU list (n = 2016–nrow(eu_short)). While
the most precise matches accounted for only n = 146 (nrow(wave_1)), the bulk of matches were identified
in the second wave. The third wave using wholename alone offers few gains over the first two waves.

Probabilistic record linkage. There will undoubtedly be missed matching opportunities due to variation
in spelling. Probabilistic record linkage can close the gap using the same three fields, but cast a wider net
by allowing a partial fuzzy match on the clean.wholename field.

prob_link <- fastLink(eu_short, un_short,
varnames = c("clean.wholename", "birthdate", "birthyear"),
stringdist.match = c("clean.wholename"),
partial.match = c("clean.wholename"))

A comparison of classification thresholds indicates that there is little difference in the match rate from
.75 ≤ ξ ≤ 0.9 – model’s estimates are robust. The match rate is significantly greater than the deterministic
approach.
Optimal cutoff
summary(prob_link, threshold = seq(0.75, 0.95, 0.05))

We use getMatches to recover the dataframe of matches, containing attributes from the eu data along with
a row index for the corresponding match from the un data. In total, the model identified n = 915 matches—
most of which are 1 : 1 matches and a smaller number (n = 22) are 1 : m matches. Virtually all deterministic
matches are also present in the probabilistic match results, thus the latter can do the job of the former and
much more. There are clearly more matches generated through probabilistic matching, but some may wonder
if a model-based approach actually surpasses human intuition: Are the matches accurate?

By drawing a random subset of non-exact matches as seen in Table 5.12 there is clear evidence that the
matching model is robust to spelling differences, excess and missing information, and order of names. The
proof is in the pudding. Probabilistic record linkage is arguably a superior strategy to deterministic record
linkage, but in practice, it does not hurt to try both.
Recover matches
prob_match <- getMatches(dfA = eu_short, dfB = un_short,

fl.out = prob_link, threshold.match = 0.85)

Recover UN IDs, whole name and birth year for visual inspection
prob_match$un.id <- un_short$un.id[prob_match$‘dfB.match[, names.dfB]‘]
prob_match$un.wholename <- un_short$wholename[prob_match$‘dfB.match[, names.dfB]‘]
prob_match$un.birthyear <- un_short$birthyear[prob_match$‘dfB.match[, names.dfB]‘]

5.10 Beyond this chapter
5.10.1 Best practices
In this chapter, we have seen that matching can be an intensive process. Every decision in the matching
process, whether in the data processing or linkage strategy, can mean the difference between modest and
impressive match rates. The code that we have laid out in this chapter can serve as a springboard for

5.10. BEYOND THIS CHAPTER 81

Table 5.12: Sample results from probabilistic record linkage.

Name (UN) Year (UN) Name (EU) Year (EU)

Ali Ben Taher Ben Faleh 1986 Ali Ben Taher Ben Faleh Ouni Harzi 1986
Ibrahim Ali Abu Bakr 1966 Ibrahim Ali Abu Bakr Tantoush 1966
Jo Yong Chol 1973 Yong Chol Cho 1973
Choe Chun Yong NA Ch’oe Ch’un-Yo’ng NA
Ali Barzan Ibrahim 1981 Ali Barzan Ibrahim Hasan Al-Tikriti 1981
Kim Mun Chol 1957 Kim Mun-Ch’o’l 1957
Haqqani Network (Hqn) NA Haqqani Network NA
Son Jong Hyok 1980 Son Min 1980
Hamid Hamad Hamid 1960 Hamid Hamad Hamid Al-’Ali 1960

constructing your own data linkage model. We close this chapter with some considerations on how record
linkage fits within a public policy context.

One of the most requested record linkage questions is how many records overlap between two lists? This is
a simple question that leads to misleading answers. Policy and strategy audiences expect a singular number
that can stand up to scrutiny, but as we have seen in this chapter, we cannot know this answer for sure.
In fact, reporting the overlap between lists does not address the existential questions policy audiences are
interested, but rather reflects the effectiveness of matching strategies—it is an important distinction to
make. A reasonable compromise is to report the range of match rates that correspond to match thresholds
as used in probabilistic record linkage. By presenting the range of possible matches, we can communicate
the uncertainty that comes with matching and that it is not a precise science.

The process of record linkage can be technically challenging, yet it does not take much to deflate confidence—
a data user simply needs to identify a mismatch, then each additional mismatch can snowball the loss of
confidence. Spot checking a randomly selected set of 100 matches and conducting a visual scan can help
quality control match results, or at least aid in articulating the quality of matches.

There is not a single best way of conducting record linkage as it is dependent on the use case that the matches
support. The only thing we know for sure should be how the matches will be used—this is the north star
of record linkage. Before starting the matching process, be clear about how the data will be used as this
will determine how the data will be processed, the type of relational model that should be expected, the
cost of false positives and false negatives, and the appropriate matching strategy. In national security, false
negatives may be more costly than false positives in the short run in order to prevent attacks and incidents,
but too many false positives in the long run can lead to an erosion of trust. Alternatively, a social services
organization can be weary of too many false positives due to limited resources to review all matches, thus
focusing on exact matches can ensure a higher hit rate and a more manageable caseload. Investing time to
understand the concerns of the ultimate data user will go a long way toward garnering support and trust.

Record linkage can resemble more of an art than science and it is a necessary step for expanding our
understanding of phenomena. To be successful, we first need clarity of purpose. Otherwise, matching can
generate useless or even harmful noise.

5.10.2 Further study
How sophisticated record linkage practices are differs from one organization to the next. Rules and heuristic-
based linkage are very much prominent for ad hoc analyses while probabilistic linkages are necessary for rapid,
large-scale, recurring analyses. Governmental agencies rely on a wide range of techniques to accomplish the
task. One thing that is consistently important across all domains is upholding strong privacy practices—
critical for maintaining the Public’s trust in governments’ use of data. The health and medical research, for
example, have invested significant resources to advance record linkage capabilities in a way that protects

82 CHAPTER 5. RECORD LINKAGE

privacy in accordance to HIPAA. Demographers and social scientists who work on large-scale administrative
records continuously research methods for preserving privacy when linking records, especially across two or
more large databases. Indeed, the methodologies for privacy-preserving record linkage will play an important
role as data becomes larger and more available. For in-depth treatment on privacy and ethics, review Chapter
14 (The Ethics of Data Science).

Chapter 6

Exploratory Data Analysis

6.1 Visually detecting patterns
Are your phone’s sensor data a privacy risk?

Smart phones are a modern wonder that allow society to stay connected and to enhance interactive experi-
ences with the world around. Each interaction between a user and a phone is dependent on a sophisticated
array of sensors. The accelerometer, for example, measures movement on a phone in three dimensions allow-
ing for the content on the screen to be oriented when the device changes positions. Each motion, action, and
gesture of a user is indicative of different kinds of activity and may even uniquely identify a person—clear
implications for privacy and security. In fact, Kwapisz, Weiss, and Moore (2010) found that a person’s move-
ment can serve as a biometric marker like a fingerprint while researchers at Stanford University found that
imperfections in the accelerometer itself can uniquely identify phones (Owano 2013). The rich detail gener-
ated from accelerometers can also have higher order policy implications. The City of Boston, for example,
launched an effort in 2011 to use smartphone accelerometers to detect potholes. The Street Bump initiative
utilized a free Android app to detect anomalies when Bostonians drive through Boston (Moskowitz 2011). In
the commercial space, companies like Fitbit and Apple have developed physical fitness activity monitoring
that helps users healthy and fit.

Do sensor data really carry such identifiable and insightful signal? It turns out that even a small sample of
accelerometer data is an enormous amount of information that can be exploited. Let’s take a look at 6.5
minutes of exercise data and graphed at a frequency of 5 hertz (five readings per second) in Figure 6.1. Can
you visually identify distinct patterns? How would you quantify a pattern?

Four distinct clusters of activity emerge in Figure 6.2:

• Activity close to zero acceleration indicate periods of rest;
• Values that fluctuate around 0.2 indicate walking;
• Sprinting activity hovers around 0.6 +/- 0.2—large amplitude; and
• Walking downstairs is the fourth and most volatile activity.

Visual inspection of data is a central tenet of Exploratory Data Analysis (EDA). Heavily promoted by
legendary mathematician John Tukey, EDA emphasizes the analysis of data through visual and graphical
means in order to inform hypotheses and validate assumptions. Humans have mastered the ability of detecting
patterns by simply looking and inspecting an object. We do ourselves a great service as data scientists to
use our vision to quickly intuit patterns in graphs.

In a public policy, EDA is sometimes both the start and end of a data project. Policy audiences are interested
in a high-level story and the visualizations that are produced in the course of EDA provide a tangible product

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_6

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_6

84 CHAPTER 6. EXPLORATORY DATA ANALYSIS

0.00

0.25

0.50

0.75

1.00

01:00 01:02 01:04 01:06 01:08
time

ac
ce

l

Figure 6.1: Net acceleration collected from a mobile phone, sampled at a rate of 5 hertz (readings per second).

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Time

ac
ce

l

(A) Idle: mu = 0.02 , +/− = 0.02 , max = 0.07

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Time

ac
ce

l

(B) (Walk: mu = 0.2 , +/− = 0.19 , max = 0.5

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Time

ac
ce

l

(C) Run: mu = 0.65 , +/− = 0.57 , max = 2.02

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Time

ac
ce

l

(D) Descend Stairs: mu = 0.28, +/− = 0.39, max = 0.97

Figure 6.2: Acceleration profile for different types of physical activity.

6.2. THE GIST OF EDA 85

to lend credence to a hypothesis. A well-conducted EDA can serve as a feasibility study, exposing critical
flaws in the data or help determine if the data has any value. The results of the EDA can help green light a
promising technical adventure or prevent a time-consuming disaster.

In this chapter, we present the basics of EDA and illustrate how graphical methods can expose the qualities
of data. Throughout the chapter, we rely on ggplot2—a graphing package that is a favorite among data
scientists. We begin with an overview of the objectives of EDA, then explore concepts of spread, similarity,
time, and correlation.1

6.2 The gist of EDA
A few things to consider. In many ways, EDA is a “pre-flight checklist”—a chance to kick the tires on
the data and a proposed project. Even before touching the data, consider formulating a set of questions that
you would like to have answered. These answers should determine if you should proceed with a data project
or if the EDA itself is the project. Table 6.1 enumerates a suggested list of five objectives and associated
questions that structure an EDA.

With the increasing availability of data, it has become common practice to take data collected for one purpose
and re-use it for another. Thus, a reasonable first step is to understand how the data were collected and if the
data can support an objective other than what it was originally designed. If the data could be useful, then
dive into the data at an operational level: check the qualities of each variable. Where needed, convert raw
values to the right data type and clean values so the data is in an analysis-ready condition. With the data
in usable shape, plot each variable’s distribution to determine if it is well behaved. If the distribution of a
continuous variable, for example, has two or more peaks, then see if any discrete variables can explain those
different central tendencies. If there are long tails or noticeably large or small values, then perhaps there are
outliers? If a variable has missing values, is it only a small proportion or the overwhelming majority? How
should one deal with them? Among mostly complete variables, are any variables correlated? Is it possible
that the most highly correlated contain redundant information?

There are, indeed, many twists and turns in each EDA. How you approach and address each quirk in the
data is up to you—it can be relatively subjective, requiring each assumption to be documented for the sake
of transparency. Nonetheless, the principal objective of the EDA process is to understand the data in a way
that empowers you and your analytical efforts.

Table 6.1: A checklist for EDA.

Objective Common Questions
Check the conceptual soundness of
the data.

How were the data collected? What are potential sources of
recording error? What does each variable mean? Does the unit of
measurement make sense for your analytical goals?

Process the data so that it is useful. Are the data types appropriate for analysis? (e.g., numeric as
numbers, date values as date objects) What manipulations will
you need to perform to get the data into usable shape? Should
data be aggregated to see patterns at a higher level?

1There are many graphs presented in this chapter. To follow along, download the DIYs repository from Github (https://
github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this section is diy-ch06-visuals.Rmd.*

https://github.com/DataScienceForPublicPolicy/diys
https://github.com/DataScienceForPublicPolicy/diys

86 CHAPTER 6. EXPLORATORY DATA ANALYSIS

Objective Common Questions
Assess the signal quality. By plotting continuous values as histograms or kernel density

plots, is there a central tendency (e.g., a peak)? Does the data
fall into a commonly recognizable shape (e.g., normal curve)? Is
the distribution tight or dispersed? Is the distibution unimodal
(one hump), bimodal (two hump), multi-modal (many humps) or
random? If there are categorical variables, how are the
continuous variable distributions different when plotted by
categorical? Are there categorical variables with small cells
(e.g., a category with a small sample)? Can small cells be
combined with larger cells to reduce small sample biases? If the
data are recorded over time, does variables trend over time?

Identify problematic values. When plotting the empirical probability distribution, are there
potential outliers? (e.g., long tails) In time series, do some values
plotted over the time spike well above the rest? Are values
missing? Are missing values occassional or common? Is there a
pattern to the missingness?

Identify important variables. Which variables are correlated with one another? Can some
variables be transformed to obtain a better correlation?

A short introduction to ggplot2. Virtually any graphing software can produce the visuals that facilitate
EDA. In fact, base R is furnished with a rich set of elementary graphing tools. It is, however, hard to beat
the ggplot2 package as it is remarkably extensible with a large number of add-ons that make almost any
visualization possible. Before we proceed further into EDA, we first provide a brief introduction to ggplot2
and gridExtra. Let’s install and load these two packages.

pacman::p_load(ggplot2, gridExtra)

The ggplot framework constructs visualizations in layers, which has the added benefit of making the code
more readable and maintainable. Each discrete element of a plot is a layer (e.g., labels, lines, grids, etc.)
that is be tacked onto a ggplot object. To illustrate how this works, we construct a line graph of the
unemployment rate (uempmed) over time (date) using the US economics dataset, doing so one layer at a
time.

p0. We begin with providing ggplot with the name of the dataset (ggplot(data = economics)) and
specifying the input variables (x = date, y = uempmed) in the esthetic properties (aes). This information
is assigned to a ggplot object p0. Although we have defined the input data, we have not yet specified which
type of graph to render, thus p0 renders only an empty canvas.

p0 <- ggplot(data = economics, aes(x = date, y = uempmed))

p1. To add geometric elements, such as points and lines, we call on a geom. The specific geom for a line plot
is geom_line. We can use a plus operator (+) to add new layers to p0 without re-defining the aes mappings.
When rendered, p1 is an unstylized line chart.

p1 <- p0 + geom_line()

p2. To add points, we specify geom_point and set a color and point size.
p2 <- p1 + geom_point(colour = "red", size = 0.2)

p3. The plot can be stylized by creating a theme. Fortunately, the ggplot2 package gives users a head
start with preset themes such as theme_bw, theme_minimal and theme_light. The font, placement, and
styling of every graphical element can also be customized to taste. We create a custom_theme that combines
theme_bw and adjust plot and axis titles to size = 10. In p3, we add these themes to p2 along with axis
labels. These stylings occupy can large amount of real estate in code. To economize on space, we will re-use
the custom_theme for the remainder of this chapter.

6.3. VISUALIZING DISTRIBUTIONS 87

Define custom formats
custom_theme <- theme_bw() +
theme(plot.title = element_text(size = 9),

axis.title.x = element_text(size = 9),
axis.title.y = element_text(size = 9))

Apply styles and labels
p3 <- p2 + custom_theme + ylab("Unemployment") + xlab("Time")

Using grid.arrange (gridExtra package), we place each graph in a 2 × 2 grid (Figure 6.3). While this
example is mundane, the key insight is that any set of graphs can be quickly developed with minimal code
and effortlessly laid out for a professional-grade presentation.
Load package for grid layouts
pacman::p_load(gridExtra)

Arrange graphs in two columns---effectively a 2 x 2 grid
grid.arrange(p0, p1, p2, p3, ncol = 2)

5
10
15
20
25

1970 1980 1990 2000 2010
date

ue
m

pm
ed

p0

5
10
15
20
25

1970 1980 1990 2000 2010
date

ue
m

pm
ed

p1

5
10
15
20
25

1970 1980 1990 2000 2010
date

ue
m

pm
ed

p2

5

10

15

20

25

1970 1980 1990 2000 2010
Time

U
ne

m
pl

oy
m

en
t

p3

Figure 6.3: Effect of adding layers of graphical elements and styles in ggplot2. The 2 x 2 grid is laid out
across two columns using grid.arrange.

6.3 Visualizing distributions
Originally published in Science, LaCour and Green (2014)—a groundbreaking-now-retracted article—showed
how a simple 20-minute conversation with a canvasser could change voter attitudes on same-sex marriage.
Within a year of publication, Broockman, Kalla, and Aronow (2015) used an assortment of distribution
plots and hypothesis tests to flag irregularities in the LaCour and Green (2014) data and expose uncanny
similarities with existing national surveys. The implication was that the study’s data were not collected as
stated, implying that the 20-minute intervention may also have been falsified. EDA played a pivotal role in
exposing this intellectual dishonesty.

The incident illustrates how the qualities of a dataset can be scrutinize by simply graphing its distributions—

88 CHAPTER 6. EXPLORATORY DATA ANALYSIS

it is easy to fake a summary statistic, but it is far harder to fake a distribution. It is in the shape of the data
that we can learn the most about a phenomenon. Both discrete and continuous variables have distributions
that can be visualized. Using a cross-sectional dataset of the economic characteristics of n = 3137 US counties
(cty stored in a .Rda file), we review a few graphing options for different types of data.

load("data/county_compare.Rda")

Discrete distributions. Discrete variables are collections of classes or categories. For example, each US
county is located in a region. Looking across all counties in the US, each belongs to one of four regions.2
Thus, when we look at the number of counties in each region, we can analyze its multinomial distribution
as there are three or more distinct categories. A variable with only two discrete classes has a binomial
distribution.

To work with discrete distributions, we need to tabulate each class in a variable. Using dplyr, let’s calculate
an assortment of summary statistics to add context regional economic patterns: the total number of counties,
total employment, average county employment, and median county employment per region.
Load dplyr
pacman::p_load(dplyr)

Summarize by region
regional <- cty %>%

group_by(region) %>%
summarize(tabulation = n(),

total = sum(all.emp),
average = mean(all.emp),
p50 = median(all.emp))

Each of these four measures is plotted using geom_bar, specifying the stat = "identity" option to indicate
that we will supply a set of pre-computed summary statistics.3 As shown in Figure 6.4, the US’ economic
story varies quite a bit depending on how we cut the numbers. The region with the largest number of
counties is the South, but this does not account for the amount of economic activity. When we compare
regions based on total employment (Graph (B)), the South is still the largest, but the relative differences are
far less. As we continue to normalize the data even more by comparing the average and median employment
numbers (Graphs (C) and (D)), the US Northeast emerges as the area with the greatest concentration of
the employment.

reg0 <- ggplot(regional, aes(x = region, y = tabulation)) +
geom_bar(stat = "identity", fill = "navy", width = 0.8) +
ggtitle("(A) Total counties") + ylab("Number of Counties") +
custom_theme

reg1 <- ggplot(regional, aes(x = region, y = total / 1000000)) +
geom_bar(stat = "identity", fill = "navy", width = 0.8) +
ggtitle("(B) Total employment") + ylab("Employment (Millions)") +
custom_theme

reg2 <- ggplot(regional, aes(x = region, y = average)) +
geom_bar(stat = "identity", fill = "navy", width = 0.8) +
ggtitle("(C) Average county employment") + ylab("Employment") +
custom_theme

reg3 <- ggplot(regional, aes(x = region, y = p50)) +

2The designation of a region depends on classification system. The U.S. Census Bureau, for example, has regional divisions
and sub-divisions.

3With ggplot2, it is also possible to supply the unaggregated data using stat_count.

6.3. VISUALIZING DISTRIBUTIONS 89

geom_bar(stat = "identity", fill = "navy", width = 0.8) +
ggtitle("(D) Median employment") + ylab("Employment") +
custom_theme

grid.arrange(reg0, reg1, reg2, reg3, ncol = 2)

0

500

1000

Midwest Northeast South West
region

N
um

be
r o

f C
ou

nt
ie

s

(A) Total counties

0

10

20

30

40

Midwest Northeast South West
region

Em
pl

oy
m

en
t (

M
illi

on
s)

(B) Total employment

0

30000

60000

90000

Midwest Northeast South West
region

Em
pl

oy
m

en
t

(C) Average county employment

0

10000

20000

30000

Midwest Northeast South West
region

Em
pl

oy
m

en
t

(D) Median employment

Figure 6.4: An assortment of bar chart by region.

Continuous distributions. Histograms are ideal for exposing the shape of a continuous distribution. These
plots resemble bar charts with one minor difference: rather than plotting the frequency of categories in discrete
variables, histograms convert a continuous variable into a series of equal-sized bins. A bin’s height represents
how many observations fall into the bin’s interval.

The ideal case for any variable is the presence of signal. In a histogram, a clear indication of signal is if there
is a peak—a central tendency at which the mean or median is more likely to reside. A common misconception
is that continuous data will always follow a normal curve (Gaussian distribution). For the most part, very few
variables in the wild truly follow this data stereotype and when data does not follow this expected pattern,
it is hard for many to understand. For example, the percent of a county that is college education (ba) does
not follow a symmetrical curve.
Assign data to ggplot
us_cty <- ggplot(cty)

us_cty1 <- us_cty + geom_histogram(aes(x =ba), colour = "navy", fill = "blue") +
ggtitle("College Educated") + xlab("% College Educated") +
ylab("Number of Observations") + custom_theme

90 CHAPTER 6. EXPLORATORY DATA ANALYSIS

We can re-apply this code snippet to three other continuous variables in our dataset to produce similar
graphs for comparison. Graph (A) in Figure 6.5 shows the percent of a county that is college-educated (ba),
which peaks at 18% and has a right tail that is slightly longer than the left tail. Median county income
(inc) in Graph (B) also exhibits a similar distribution shape. Both (A) and (B) are fairly well-behaved
variables. However, total employment (all.emp) in Graph (C) is highly skewed. When presented with a
skewed distribution, take some time to investigate observations in the long tail to understand how they differ
from the peaks. In some cases, there is a reasonable explanation for these outlying observations. In these
graphs, for example, the tails are comprised of counties with the largest cities in the United States such as
Cook County (Chicago), Los Angeles, the Five Boroughs of New York City, among other large metropolitan
areas. In fact, the top 20% of counties account for 85.9% of the employment in the country. Alternatively, if
there is not a discernable pattern, then perhaps these observations are anomalies or outliers.

The first three graphs illustrate when signal is present—there is a clear central tendency. How does a his-
togram look when a variable lacks signal? Perhaps the most common cause is a random uniform distribution
(runif()) as seen in Graph (D). Every bin is approximately the same height. If we were to randomly draw
an observation from Graph (D), there is an equal chance that it could originate from anywhere in the distri-
bution. In contrast, most observations tend to cluster around the peak in the first three graphs thus there is
a higher chance that a randomly drawn observation is closer to that region.

0

100

200

300

400

500

0 20 40 60 80
ba

co
un

t

(A) % College Educated

0

100

200

300

400

5e+04 1e+05
inc

co
un

t
(B) Median Income

0

1000

2000

0e+00 1e+06 2e+06 3e+06 4e+06
all.emp

co
un

t

(C) Employment

0

100

200

300

400

0.00 0.25 0.50 0.75 1.00
rand

co
un

t

(D) No signal

Figure 6.5: Histograms that show various forms of signal.

For small samples, histograms will appear jagged and may prove challenging to interpret. An elegant alterna-
tive is the kernel density plot. The plot relies on kernel density estimation (KDE) to calculate the chance of
observing a given value based on proximity to all points within a bandwidth. The bandwidth is a window size
that indicates how much of a variable should be included in the calculation, where larger bandwidths produce
smoother graphs with less noise, while smaller bandwidths produce more volatile results. The implication is
that the shape of the curve can change if we change the bandwidth—the pattern is an approximation that
can be manipulated.

How do histograms and kernel densities compare? To see the differences, we generate two kernel density
plots using different bandwidths using geom_density. Notice that the distributions in the kernel density

6.3. VISUALIZING DISTRIBUTIONS 91

plots are represented by continuous lines, which are far smoother than the more bumpy histogram in Graph
(A), whereas Graph (B) uses a default value for the bandwidth that minimizes noise, Graph (C) reduces the
bandwidth to 1% of the default and exhibits far more noise (Figure 6.6).
Histogram
h1 <- us_cty +

geom_histogram(aes(ba), colour = FALSE, fill = "blue") +
ggtitle("(A) Histogram") +
custom_theme

Kernel Density
k1 <- us_cty +

geom_density(aes(ba), colour = FALSE, fill = "blue") +
ggtitle("(B) Kernel (default bandwidth)") +
custom_theme

Kernel Density
k2 <- us_cty +

geom_density(aes(ba), adjust = 0.01, colour = FALSE, fill = "blue") +
ggtitle("(C) Kernel (1% bandwidth)") +
custom_theme

Juxtapose two graphs
grid.arrange(h1, k1, k2, ncol = 3)

0

100

200

300

400

500

0 20 40 60 80
ba

co
un

t

(A) Histogram

0.00

0.02

0.04

0.06

0 20 40 60 80
ba

de
ns

ity

(B) Kernel (default bandwidth)

0.0

0.1

0.2

0.3

0 20 40 60 80
ba

de
ns

ity
(C) Kernel (1% bandwidth)

Figure 6.6: Histograms and kernel density plots showing county-level estimates of percent college educated.

Combining discrete and continuous distributions. By incorporating discrete variables, we can enrich
the insights drawn from continuous variables. Imagine the differences that could emerge when plotting a
kernel density plot for each level of a discrete variable. However, overlaying multiple kernel density charts can
easily overwhelm the viewer—too much information on one canvas. The geom_density_ridges (ggridges
package) lays out kernel density plots in an innovative format: each kernel density is plotted on a separate
row, resembling a series of mountain regions. This format makes it easy to compare levels of the discrete
variables while preserving the horizontal axis scale of the continuous variable. Figure 6.7 plots poverty rate
by region, showing that the US South has a higher level of poverty relative to other regions.
Load ggridges
pacman::p_load(ggridges)

92 CHAPTER 6. EXPLORATORY DATA ANALYSIS

Plots by group
us_cty + geom_density_ridges(aes(x = pov, y = region),

fill = "blue", colour = "white", scale = 2, alpha = 0.9) +
xlab("Poverty Rate") + ylab("Region") + custom_theme

Midwest

Northeast

South

West

0 20 40
Poverty Rate

R
eg

io
n

Figure 6.7: Kernel density plots by region.

6.3.1 Skewed variables
Many statistical models used in public policy assume that the underlying variables are normally distributed.
If they are not, then there is a chance that insights are not generalizable. We have already observed, however,
that it is fairly uncommon to have a normally distributed variable—many variables exhibit some skew.

Many variables will be left-skewed (i.e., long tail to the left with a peak to the right) or right-skewed (i.e., long
tail to the right with a peak to the left). Any skewness means a variable is asymmetrical. Highly skewed
variables, such as Graph (A) in Figure 6.8, can be challenging to analyze as the core mass of the distribution
is compressed into a small area that is hard to visually inspect. For right-skewed distributions, consider
applying a logarithm transformation (or log transform for short) which has the effect of compressing the long
tail (see Graph (B)). A square root transformation is far less drastic and is able to spread the center mass of
the distribution over a greater area. Left-skewed distributions (not shown) can be transformed by squaring
a variable (e.g., x2).

In practice, the principal use of variable transformations is to adjust data to meet modeling assumptions. One
could apply a log transformation blindly through any adjustments to data may arbitrarily move a variable
closer or farther from an ideal theoretical distribution. Quantile-Quantile plots (QQ-plots) help assess how
closely a variable follows a known theoretical distribution (e.g., Normal distribution) at each quantile. In
ggplot2, a pair of functions are used to make this comparison:

• stat_qq produces the QQ plot. By default, the function makes comparisons with a Normal distribution,
but can be adjusted to compare with other distributions.

6.3. VISUALIZING DISTRIBUTIONS 93

0

1

2

3

4

5

0 5 10 15 20
Percent in tech sector

de
ns

ity
(A) Without transformation

0.0

0.1

0.2

−4 −2 0 2
Log Percent

de
ns

ity

(B) With log10 transformation

0

1

2

0 1 2 3 4
Square Root Percent

de
ns

ity

(C) With square root transformation

Figure 6.8: Kernel Density Plots for percent of workforce in tech sector, with and without a log10 transfor-
mation applied.

• stat_qq_line computes the line of equality—a benchmark that indicates when two distributions are
identical at each quantile.

Figure 6.9 compares the percent college-educated (vertical axis) with a normal distribution (horizontal dis-
tribution). The straight blue line represents the line of equality generated from stat_qq_line—when the
education rate exactly matches a theoretical normal distribution. The points represent specific values of
the college-educated rate and how it maps to the same quantile in a theoretical normal distribution. The
untransformed distribution only aligns with the theoretical distribution at center mass, while values at the
tails diverge. By applying a square root transformation in Graph (B), the tails move closer to the line of
equality but still fall short of target, while a log transformation is able to approximately normal distribution.

In all cases, variable transformations can improve a variable’s properties by forcing it to appear more “nor-
mal”. These adjustments come at the cost of a less intuitive set of variables.
Raw data
qq1 <- ggplot(cty, aes(sample = ba)) +

stat_qq() + stat_qq_line(col = "blue") +
ggtitle("(A) College Educated versus Normal") +
custom_theme

Transformed
qq2 <- ggplot(cty, aes(sample = ba ^ 0.5)) +

stat_qq() + stat_qq_line(col = "blue") +
ggtitle("(B) Square Root Transformation") +
custom_theme

Transformed
qq3 <- ggplot(cty, aes(sample = log(ba))) +

stat_qq() + stat_qq_line(col = "blue") +
ggtitle("(C) Log Transformation") +
custom_theme

Juxtapose
grid.arrange(qq1, qq2, qq3, ncol = 3)

94 CHAPTER 6. EXPLORATORY DATA ANALYSIS

0

20

40

60

80

−2 0 2
theoretical

sa
m

pl
e

(A) College Educated versus Normal

2.5

5.0

7.5

−2 0 2
theoretical

sa
m

pl
e

(B) Square Root Transformation

1

2

3

4

−2 0 2
theoretical

sa
m

pl
e

(C) Log Transformation

Figure 6.9: A QQ plot comparing transformed and untransformed education rates versus a theoretical normal
distribution.

6.4 Exploring missing values
Missing values are a reality of working with real world and pose logistical challenges for data projects.
Most analytical techniques expect complete data records. Linear regression—a favorite in public policy—can
only be estimated with complete samples, thus most implementations will only use complete records. Many
machine learning algorithms will not be able to train a model with any missing value. If all observations
in a dataset are missing at least one value, then the value of the entire dataset may be at risk. For this
reason, missing values are sometimes dropped, while other times they can be imputed (i.e., filled with an
approximation). Exactly how one treats missing values depends on understanding the qualities of missingness.
In this section, we explore topics in dealing with missing values—how does missingness appear in data, how
does one analyze its qualities, and how to treat it.

6.4.1 Encodings
On the surface, missing values seem to have an obvious meaning—there is no information available. But as one
works with a variety data sources, missingness signals different data quality issues in different contexts. The
US Census Bureau’s American Community Survey (ACS), for example, captures fine details about life in the
United States. The dataset is carefully designed to ensure that virtually any demographic (e.g., gender, age,
race) and economic context (e.g., income, region, employment) is accurately represented. Suppose we found
a set of blank values in the variables “Year of naturalization” and “Means of transportation to work”. How
should one interpret those blanks? It depends on the dataset and how data is encoded. “Not Applicable”—or
when the concept being measured does not apply to the survey respondent—are represented as blank cells.
This is a different concept than “Not Specified”—or when the respondent chooses not to respond to the
question or data is not provided for other reasons. In the ACS, we can interpret blank cells for both “Year
of naturalization” and “Means of transportation to work” as someone who is born in the United States and
does not travel to work as the respondent is not in the labor force.

These encodings are not universal, however. Table 6.2 compares a selection of encodings from different data
sources.4 In many data sources, “Not Specified” is encoded as a blank cell (R treats these empty cells as NA);
however, blank cells can also represent other types of missingness. Whereas “Not Applicable” is encoded as

4The NNBS dataset is a General Household Survey produced by the Nigerian National Bureau of Statistics in collaboration
with the World Bank to measure (Nigeria National Bureau of Statistics 2019). The example is drawn from survey questions
relating to banking access in file “sect4a1_plantingw4”. The EU LFS is the European Union’s Labour Force Survey, which
is conducted by national statistical agencies of EU member countries and maintained by Eurostat (Eurostat 2020). The ACS
dataset is the American Community Survey, administered by the U.S. Census Bureau (U.S. Census Bureau 2018a). The NYC
311 SR dataset contains complaints and service requests made to the City of New York (NYC Department of Information
Technology and Telecommunication 2020).

6.4. EXPLORING MISSING VALUES 95

a blank in the ACS, the EU LFS uses the value 9. Meanwhile, high-frequency datasets that are updated
as new information is made available over time, such as NYC’s 311 Service Requests (NYC 311) capturing
customer service interactions, do not distinguish between “Not Applicable”, “Not Specified”, and “Not Yet
Known”—all recorded as blanks. Since requests require time to complete, “Not Yet Known” tends to be
updated as more is known. One thing is clear: blank cells represent some form of missingness, but what they
represent depends on how the data producer designs the dataset.

One encoding is missing from this picture: zero. Unlike missing values, zero is reserved for instances where
no known activity occurred. Someone who did not work a salaried job does not have income. Two countries
that have not engaged in trade do not have any recorded trade. Thus, zero can oftentimes be interpreted as
zero. When in doubt, consult the data dictionary.

Table 6.2: Comparing encodings for a selection of datasets.

Dataset Example Variable
Not
Applicable

Not Specified
(Non-Response)

Not
Sure

Not Yet
Known

ACS Year of Naturalization Blank Imputed - -
ACS Employment Status Blank Imputed - -
EU
LFS

Permanency of the Job 9 Blank - -

EU
LFS

Professional status - Employment
status

9 Blank - -

NYC
311 SR

Closed Date - When a request has
been completed

- - - Blank

NYC
311 SR

Location Type - Where is Blank Blank - Blank

NNBS Did [NAME] open their account
him/herself?

- Blank -99 -

NNBS Did [NAME] search for information
before getting bank account?

- Blank -99 -

6.4.2 Missing value functions
R has functionality to detect missing values and other problematic values. In Table 6.3, we list a few func-
tions that detect specific types of missingness, namely NA, NaN, and Inf.5 Each of these functions accept
data objects (e.g., single values, vectors, matrices, and data frames) and return equal-sized logical objects
(e.g., TRUE, FALSE) that indicate the location of specific types of missing values.

Table 6.3: Functions for detecting different types of problematic
values.

Function Description
Example Target
Value

is.na Returns logical value for each element indicating if NA is present. NA
is.nan Returns logical value for each element indicating if impossible

value is present.
FALSE / 0

is.infinite Returns logical value for each element indicating if infinite value
is present.

1 / 0

complete.cases Returns logical value for each row indicating if complete. NA

Let’s see how these functions behave when applied to a vector of hypothetical hourly wages with inconsistent
5Inf values are not truly missing values, but can prove to be problematic. We include these values for awareness.

96 CHAPTER 6. EXPLORATORY DATA ANALYSIS

encodings. The results have been compiled in Table 6.3, comparing the returned logical values with the
corresponding input data. Whereas is.na flags both NA and NaN values, is.nan is only sensitive to impossible
values as is is.infinite with infinity values. Unlike the “is.” functions, the complete.cases function
evaluates whether a row is free of NA and NaN values. In other words, complete.cases checks if a row is
complete. As missing values can be dispersed across multiple variables in a data frame, this function comes
in handy when determining how many records are complete across all variables.
Create sample values
hourly_wage <- c(14, 15, NA, 15, 20, NaN, -99, Inf)

Test for missing values
miss_na <- is.na(hourly_wage)
miss_nan <- is.nan(hourly_wage)
miss_comp <- complete.cases(hourly_wage)
miss_inf <- is.infinite(hourly_wage)

While the conditional statement (hourly_wage == -99) can evaluate non-missing values, it returns NA wher-
ever values are missing. This highlights the need to be vigilant when identifying missing values that are
encoded as negative integers: Clean and harmonize the data before treating missing values. In this example,
we edit -99 values as NA for consistency (Table 6.4).
Conditional statement to detect -99
miss_enc <- hourly_wage == -99

Recode -99 as NA
hourly_wage[hourly_wage == -99] <- NA
miss_broad <- is.na(hourly_wage)

Table 6.4: Output of missing value functions.

Missing 14 15 NA 15 20 NaN NA Inf
NA F F T F F T F F
NaN F F F F F T F F
Infinite F F F F F F F T
-99 F F NA F F NA T F
Complete Cases T T F T T F T T
-99 adjusted F F T F F T T F

6.4.3 Exploring missingness
Quantifying missingness. We can apply arithmetic functions to the logical vectors to summarize the
missing values. For example, we take the sum and mean below to calculate the number and proportion of NA
values.
Count the number of TRUE values when NA and NaN are present
sum(miss_na)

Proportion missing
mean(miss_na)

When summarizing a vector with NA values, we need to provide the arithmetic functions explicit instructions
on how to treat missingness.6 For example, the miss_enc vector contains two NA values, which causes sum
and mean to return NA values.

6Note this applies not only to the logical values from missing value functions but also to any vector with NA values.

6.4. EXPLORING MISSING VALUES 97

Sum returns an NA
sum(miss_enc)

[1] NA

One option is to remove NA values by specifying na.rm = T with select functions.7 This forces R to return
an estimate based on non-missing values, but may also be inaccurate. In this example, suppressing NA values
yields an accurate tally for -99 values only.
Suppress NA values
sum(miss_enc, na.rm = T)

[1] 1

Alternatively, we could impute what values would have been if they were not missing. In this case, replacing
NA values with TRUE gives a reasonable estimate of the number of NA, NaN and -99 values.
Replace NA value with guess
miss_enc[is.na(miss_enc)] <- TRUE

Return result with imputation
sum(miss_enc)

[1] 3

Should R skip over the NA values or find some way to include them? It depends on the objective. Treating
the missing values is easy, but doing so in a way that is reliable and accurate requires analysis of the nature
of missingness.

Analyzing missingness. Rubin (1976) lays out distinct types of missingness. Each type has a specific
statistical definition and properties and, in turn, should be treated differently. In some cases, focusing on
complete values can bias an analysis as the missingness is systematic. In other cases, missingness is completely
random and does not adversely impact the analysis. Below, we describe these different grades of missingness,
not in their full statistical splendor, but at a high conceptual level:

• Missing Completely at Random (MCAR): When missing values are uncorrelated with observed variables
in the data. For example, the non-response pattern for a survey question about income is not correlated
with other variables captured in the survey such as education level or poverty. When data are MCAR,
the missing values are not likely to bias the analysis.

• Missing at Random (MAR): When missing values depend on observed variables in the dataset. For
example, non-response to an income question is correlated with respondents’ education level. When
data are MAR, the missing values can lead to a biased analysis if left untreated or unadjusted.

• Missing Not at Random (MNAR): When missing values are correlated with the concept that is mea-
sured and also do not meet any of the criteria for MCAR and MAR. For example, survey respondents
do not respond to the income question if they have higher incomes. In these cases, a researcher cannot
directly identify the reasons for MNAR and instead requires deep subject matter expertise to identify
the precise mechanisms causing missingness.

Whereas MNAR relies more on subject matter expertise to detect, MCAR and MAR can be tested through
a relatively simple hypothesis testing approach: Create a dummy variable to mark missing values, then use
the dummy to test differences using T-tests for continuous variables and Chi-squared tests for discrete vari-
ables. Wherever significant differences appear, we can conclude that missingness is correlated with observed
variables.

To illustrate this testing strategy in action, we modify the cty dataset to simulate MCAR and MAR.

Detecting MCAR. In the example below, we randomly select and remove approximately 50% of the ba
variable, create a missing dummy variable, then conduct hypothesis tests between the dummy variable and

7Many functions have the ability to ignore NA values. When in doubt, check the Help section for documentation.

98 CHAPTER 6. EXPLORATORY DATA ANALYSIS

other variables in the dataset (e.g., income inc, poverty pov, and the region in which the county is located).
As none of the tests are significant at any standard levels (e.g., 1%, 5%, or 10%), we can infer that the values
are likely missing completely at random.
Re-load dataset
load("data/county_compare.Rda")

Create copy of cty
cty_mcar <- cty

Simulate MCAR with 20% randomly missing
set.seed(123)
cty_mcar$ba[runif(nrow(cty_mcar)) <= 0.5] <- NA

Create missing value dummy variable
cty_mcar$missing <-is.na(cty_mcar$ba)

Test covariates
t.test(inc ~ missing, data = cty_mcar)
t.test(pov ~ missing, data = cty_mcar)
chisq.test(factor(cty_mcar$region), cty_mcar$missing)

Detecting MAR. In this second example, we apply the same procedure except we simulate dependence
between variables by randomly remove approximately 50% of the ba variable below the first quartile of
the income variable inc. In other words, we make the missingness appear as if lower income counties are
less likely to have education data available. The hypothesis tests confirm the presence of dependence as
all tests return statistically significant results at the 1% level. This finding should not be a surprise as
income, socioeconomics, and geography are all intrinsically intertwined. Because the missing value pattern
is correlated with other variables, we can infer that the values are only missing at random.
Create copy of cty
cty_mar <- cty

Simulate MAR
set.seed(123)
cty_mar$ba[cty_mar$inc < 41073 & runif(nrow(cty_mar)) <= 0.5] <- NA

Create missing value dummy variable
cty_mar$missing <-is.na(cty_mar$ba)

Test covariates
t.test(inc ~ missing, data = cty_mar)
t.test(pov ~ missing, data = cty_mar)
chisq.test(factor(cty$region), cty_mar$missing)

Identifying the nature of the missing values is just the first step. There are different strategies for treating
MCAR versus MAR.

6.4.4 Treating missingness
Treating missing values is necessary in order for an analysis to move forward. Otherwise, analyses would
rarely be completed. Fortunately, there is a broad range of treatment options as shown in Table 6.5. Some
options only apply to MCAR rather than MAR as bias can have a significant impact on the quality of
adjustment. Other options operationalize a dataset by deleting incomplete records, while others rely on
imputation. Ultimately, it is worth the investment to test and compare the results from multiple options if
possible.

6.4. EXPLORING MISSING VALUES 99

Table 6.5: Missing value treatment options.

Treatment Option Description MCAR MAR
Listwise deletion Drop any record with a missing value. Also known as complete

case analysis.
x

Drop variable Drop variables with missing values. Most appropriate when the
number of missing values is quite large and concentrated in one
variable.

x x

Mean or median
imputation

Substitute missing values with the variable’s mean or median.
Mean is suitable for symmetrical continuous distributions,
while the media is suitable for skewed continuous variables.

x

Mode imputation Substitute missing values with the variable’s mode—suitable
for discrete variables.

x

Model-based
imputation

Impute missing values using a prediction model such as a
regression trees or k-Nearest Neighbors (kNN). The models
take advantage of correlations observed among complete cases
to approximate missing values.

x x

Multiple imputation Impute using model-based imputations, doing so multiple
times then averaging results to remove possible biases.

x x

Deletion is the quickest way to force data into a usable form. Generally, we approach deletion in two ways:
listwise deletion (row-wise) and variable deletion (column-wise).

Listwise deletion only retains complete records—sometimes referred to as complete case analysis—and is only
appropriate when data are MCAR. Because there is not a discernable pattern in missingness, whittling the
dataset only to complete records will not likely yield biased results—the complete records are, on average, no
different than records with missing values. While listwise deletion may seem to be an obvious choice, there
are situations where every record has at least one missing value. A complete case analysis lead to all records
being dropped.

In R, we can filter the dataset to include only complete cases using one of the following functions: na.omit or
filtering using complete.cases. The na.omit function scans all columns and drops any row that has an NA,
returning a filtered object. A slightly more verbose option relies on complete.cases to identify the position
of complete records, then subset the data frame using row indexes of complete cases. Both options yield the
same results. In the example below, both approaches filter cty_mcar to n = 1555 complete records.
Option 1: na.omit
option1 <- na.omit(cty_mcar)

Option 2: filter using complete.cases
option2 <- cty_mcar[complete.cases(cty_mcar),]

Variable deletion is a reasonable option when a variable is missing too many values. Precisely how much
missingness is acceptable is a personal judgment call, however. For example, if the ba variable is complete in
5% of a sample, this variable does not merit one’s attention and can be discarded. Alternatively, if 80% of the
variable is complete, then perhaps the variable can be salvaged. In actuality, removing just one variable might
not remedy the problem, especially in datasets with many missingness dispersed across multiple variables.
When we set a minimum completeness threshold (i.e., a criterion that indicates the lowest acceptable percent
complete for a variable to be retained), we see trade-offs in the number of variables dropped and the number
of rows retained. As we increase the completeness threshold, we will likely have fewer retained variables, but
more complete records. These trade-offs are dataset-specific, thus we recommend conducting a missingness
analysis to quantify these relationships.

In the example below, we simulate a dataset with n = 10000 and 100 variables. Each variable can have up

100 CHAPTER 6. EXPLORATORY DATA ANALYSIS

to 25% missing values (see pct_miss) that are missing completely at random.8

Simulate 100 variable dataset with n = 10000
n <- 10000
k <- 100
pct_miss <- 0.25

Each variable has between 0% and 25% missingness
df <- data.frame(matrix(nrow = n, ncol = 0))

for(i in 1:50){

Create random Poisson distribution
set.seed(i)
df[[paste0("x",i)]] <- rpois(n, runif(1, 0, 500))

Substitute missing values with -9999
df[runif(n) <= runif(1, 0, pct_miss), i] <- NA
}

With the data ready, we will calculate the number of variables retained and number of complete records for
different levels of variable completeness. This requires a vector completeness—constructed using apply to
calculate the proportion of missing values for each column—in order to efficiently identify which columns are
complete above a threshold. To map out the trade-offs, we loop over percent thresholds from 1% to 99%,
recording complete records (n.complete) and retained variables (num.vars).
Summarize completeness by column using apply
completeness <- apply(df, 2, function(x){mean(!is.na(x))})

Calculate complete case sample size when
Only variables > X% completeness are retained
counts <- data.frame()

for(threshold in seq(0.01, 0.99, 0.01)){

Whittle sample to variables complete more than X%
temp <- df[,which(completeness >= threshold)]
temp <- temp[complete.cases(temp),]

Tabulate summary
counts <- rbind(counts,
data.frame(min.pct.complete = 100 * threshold,

num.vars = sum(completeness >= threshold),
n.complete = nrow(temp)))

}

When graphed, the trade-offs are quite striking in this MCAR scenario. As shown in Figure 6.10, Graphs
(A) and (B) illustrate the number of complete records and variables retained as the completeness threshold
is increased. As the threshold increases, we find fewer variables have enough complete records to meet the
cutoff. The inverse is true for complete records: As we drop incomplete variables, the number of complete
records increases. Graph (C) illustrates the trade-off. If we truly did not have a preferred set of variables,
then the inflection point in the curve (around 25 variables, 3750 observations, threshold > 87) is the point
of perfect balance. If certain variables are valued more than others, however, we can adjust the sample along
this curve. While n = 3750 may be an unsatisfying outcome for a dataset of n = 10000, it is the lower bound.
As we will see in the following subsection, imputation can help fill data gaps so that we minimize the number

8Consider experimenting with the pct_miss parameter to understand the trade-offs.

6.4. EXPLORING MISSING VALUES 101

of incomplete records.

0

2500

5000

7500

10000

0 25 50 75 100
Completeness Threshold (%)

C
om

pl
et

e
R

ec
or

ds
 (n

)

(A) Complete Records

10

20

30

40

50

0 25 50 75 100
Completeness Threshold (%)

R
et

ai
ne

d
Va

rs
. (

#)

(B) Retained Vars.

10

20

30

40

50

0 2500 5000 7500 10000
Complete Records (n)

R
et

ai
ne

d
Va

rs
. (

#)

(C) Tradeoff

Figure 6.10: Mapping of variable and record completeness as a function of variable completeness threshold.

Imputation. Rather than discarding records, imputation fills each variable’s missing values with a guess.
How we construct arrive at the guess is very much a rabbit hole of complexity.

The simplest approaches involve mean or median imputation, which are appropriate for when data are
MCAR. By substituting missing values with a central value, we make the conscious decision to preserve one
quality of the original dataset—either the mean or median—but at the cost of disturbing other qualities.
Symmetrical continuous values can be imputed with a mean, while the median is best for skewed distributions.
For discrete values, the mode is the logical choice. In the example below, we impute continuous values in the
cty_mcar dataset.
Fill ba variable with mean
cty_mcar$ba_mean <- cty_mcar$ba
cty_mcar$ba_mean[which(cty_mcar$missing)] <- mean(cty_mcar$ba_mean, na.rm = T)

Fill ba variable with median
cty_mcar$ba_med <- cty_mcar$ba
cty_mcar$ba_med[which(cty_mcar$missing)] <- quantile(cty_mcar$ba_med, 0.5, na.rm = T)

When data are MAR, however, we can increase the sophistication of our imputations by leveraging model-
based imputation techniques that expose correlations between missing values and other variables. In many
ways, model-based imputation works the same way as a predictive model: a model learns the relationship
between each variable and all other variables using only complete records. Those learned patterns are then
applied to where covariates are not missing in order to approximate the missing values.

While we will cover prediction in Chapter 10, we briefly illustrate how to access model-based imputation
techniques using the caret package—a favorite for machine learning applications. In particular, we focus on
the preProcess function that imputes missing values in data frames. For this example, we use a modeling
technique known as bagged regression trees to find multivariate patterns that can inform imputation (method
= "bagImpute") and apply it to the cty_mar data frame. Model-based imputation requires some careful
thought about which variables are relevant to missing values. In this case, we include all variables that are
believed to have a correlation, excluding identifier variables such as fips, state, and county name.

Once the preProcess function finds the underlying correlations and stores the patterns as a model object
cty_mar_model, we predict missing values in the cty_mar data frame and output a cleaned dataset filled.
Load caret
pacman::p_load(caret)

Train regression tree imputation model
cty_mar_model <- preProcess(cty_mar[,-c(2:4)],

102 CHAPTER 6. EXPLORATORY DATA ANALYSIS

method = "bagImpute")

Fill in dataset
filled <- predict(cty_mar_model, cty_mar)

Thus far, we have only considered imputation as a means to fill a missing value with the best guess. However,
there is uncertainty in the guesses. We may never know the true value. Furthermore, we may have happened
upon an imputation by chance. This view of imputation from the lens of random variables implies that a
parameter estimates (e.g., a mean, a slope between two variables) should have upper and lower bounds that
reflect uncertainty. Multiple imputation (MI) is a popular approach in the social and medical sciences. The
technique recognizes that imputation generates m sets of imputations. Each dataset is analyzed following an
identical approach, then the results are combined giving a mean and uncertainty estimate for each parameter
estimate. While MI does increase the robustness of an analysis, it is technically demanding and beyond the
scope of this text. For an in-depth treatment on the subject, we recommend the seminal text on the subject
Multiple Imputation for Nonresponse in Surveys by Donald B. Rubin.

How do all of these imputation techniques compare? In Figure 6.11, we evaluate how well each imputation
approach is able to approximate the original ba distribution. For the MCAR dataset, the mean and median
imputations (Graphs (D) and (E)) preserve specific qualities (e.g., central tendency) while distorting the
shape of the distribution. In contrast, the model-based imputation applied to the MAR dataset more suc-
cessfully approximates the shape of the original distribution (Graph (F)). While model-based approaches
can be applied to both MCAR and MAR datasets, MAR datasets are far more suitable given the presence
of correlations that can be exploited.

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
BA

D
en

si
ty

(A) Original BA

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
BA

D
en

si
ty

(B) BA when MCAR

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
BA

D
en

si
ty

(C) BA when MAR

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
BA

D
en

si
ty

(D) Mean Impute (MCAR)

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
BA

D
en

si
ty

(E) Median Impute (MCAR)

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
BA

D
en

si
ty

(F) Model Impute (MAR)

Figure 6.11: Distributions of original BA variable and its MCAR and MAR versions compared with impu-
tation results. Dashed lines in panel (B) through (F) are a reference to the original distribution. Densities
have been scaled.

When to use imputation versus deletion? There is no perfect solution, but ultimately the choice
depends on the analytical objectives. If data are missing completely at random, listwise deletion offers
a speedy conclusion to treating missing values, assuming that the number of complete records is large.
Otherwise, it is likely one will need to combine imputation and deletion.

For use cases such as analyzing high-level trends or anticipating outcomes using prediction models, imputation

6.5. ANALYZING TIME SERIES 103

can operationalize the data. Of course, this comes at a cost. As more imputation is applied to the data, we
should be cautious about interpreting fine-grained relationships as imputed data may introduce patterns
into the data. Imputation, however, is not suitable when analyses require exact measurement. For example,
financial accounting requires precise numbers as imputation distort figures and detecting missing values is
important for identifying errors and gaps in accounting systems.

6.5 Analyzing time series
Many datasets are time series that record information over regular intervals of time. Basically, all stock ticker
prices, economic data, weather data, and physical sensors are time series.

Time series are special as their sequential nature dictate how one should work with the data. There are
certain types of graphs that are better suited for time series. While the distribution could be plotted using
a histogram, time series driven by population growth generally increase, thus the graph would show a crude
approximation of growth. Instead, line graphs (geom_line), point graphs (geom_point), and area graphs
(geom_area) capture the sequential nature of the data. In Figure 6.12, we plot the total number of shipping
containers that traveled through the Port of Long Beach in California (Port of Long Beach 2019).
Load data
polb <- readr::read_csv("data/polb.csv")

Set data and create plots
teu <- ggplot(polb, aes(x = date, y = total)) + custom_theme
teu_line <- teu + geom_line(colour = "blue") +

ggtitle("Line") + xlab(’Date’) + ylab(’Total’)
teu_area <- teu + geom_area(fill = "blue") +

ggtitle("Area") + xlab(’Date’) + ylab(’Total’)
teu_point <- teu + geom_point(colour = "blue") +

ggtitle("Point") + xlab(’Date’) + ylab(’Total’)

Render
grid.arrange(teu_line, teu_area, teu_point, ncol = 3)

2e+05

4e+05

6e+05

2000 2010 2020
Date

To
ta

l

Line

0e+00

2e+05

4e+05

6e+05

2000 2010 2020
Date

To
ta

l

Area

2e+05

4e+05

6e+05

2000 2010 2020
Date

To
ta

l

Point

Figure 6.12: Comparison of line, area, and point graphs for Port of Long Beach’s monthly TEU volume.

Because time series have a special structure, we can analyze layers of information embedded within it. A
time series (Y) can be decomposed into three components:

Y = T + S + R

104 CHAPTER 6. EXPLORATORY DATA ANALYSIS

Where the T is a trend—the prevailing direction of the data, S is seasonality or patterns that recur on
a regular interval (e.g., monthly seasonality), and R is the noise component (sometimes referred to as
“irregular” or “residual”)—the leftover information that is not explained by the trend or seasonality.9 Raw
time series, such as the POLB container volumes, are not-seasonally adjusted (NSA), retaining all components
of a time series as evidenced by the peaks and troughs that occur on a regular annual cycle.

Successful policy narratives are typically crisp, yet seasonality and noise can muddle the story. Data are
often seasonally adjusted to remove the seasonal component so there is less ambiguity when communicating
the direction of trends.10 Furthermore, decomposing a time series may prove useful for identifying outliers
by inspecting unpredictable shifts in the residuals.

Seasonal decomposition. One widely used technique is Seasonal Decomposition of Time Series by Loess
(STL) as developed in Cleveland, Cleveland, and Terpenning (1990). The technique uses two loops to itera-
tively extract the trend, seasonal component, and residual. Because seasonality can change over time, STL
has the capability of finding one stable seasonal pattern for the entirety of a series versus one that evolves
over time.

The technique has been implemented as the stl function in Base R, which expects a time series to be
converted into a special time series object using ts. These time series objects carry metadata that are
pertinent to working with time series, namely the frequency and starting period of the series. Excluding the
date in Column 1 of polb, we convert five variables into a ts object (polb_stl) with a monthly frequency
(freq = 12) and a starting date of January 1995 (start = c(1995, 1)).11

To put stl to the test, the only argument required other than the variable of interest is s.window that
controls how quickly seasonality evolves. When s.window = "periodic", the seasonal pattern is assumed
to be roughly constant over the entire series while a smaller window size allows the pattern to change quickly.
Below, we examine the total container volume shipped through Long Beach (total) and make explicit our
assumption that seasonality occurs on a periodic basis—or the same as the 12-month cycle.
Convert the polb object to time series excluding Column 1
polb_ts <- ts(polb[,-1], freq = 12, start= c(1995, 1))

Apply STL - Total
polb_stl <- stl(polb_ts[,"total"], s.window = "periodic")

Each stl object contains a time.series table with the seasonal, trend, and remainder. Figure 6.13 plots
the polb_stl object using the autoplot function (forecast package). Assuming constant seasonality, the
monthly container volume can swing between -59,000 (February) and +41,000 (August) relative to trend, or
a range of approximately 100,000 containers over the course of a year. A closer inspection of the noise com-
ponent shows large peaks and troughs, some look suspiciously large: Are there potential outliers, particularly
in 2002 and 2015?
Plot STL
pacman::p_load(forecast)
autoplot(polb_stl) + custom_theme

The remainder is not particularly useful when measured in containers as it does not consider what is typical
variability for a series. Scaling the remainder as a z-score (z = (x−μx)

σx
) maps it into an easily interpretable

form. Figure 6.14 plots the z-score as a time series, placing fences at |z| = 3 to mark records that lie beyond
99.7% of the mass of a standard normal distribution. Indeed, the hypothesized outliers sit just beyond the
fences, making it easy to isolate outliers: The drop in container volumes in 2002 and 2015 occur during port
labor disputes (Greenhouse 2002; Isidore 2015).

9Some series follow a multiplicative formulation. For simplicity, we focus on the additive case.
10There are challenges with seasonal adjustment, however. The process of decomposing a time series can be subjective and

requires analyst judgment. There does not exist a universal definition of what truly constitutes trend or seasonality. Ultimately,
whether a series is “well-adjusted” is dependent on trust in the process.

11All variables should be numeric values.

6.6. FINDING VISUAL CORRELATIONS 105

d
a
ta

tr
e
n
d

s
e
a
s
o
n
a
l

re
m
a
in
d
e
r

1995 2000 2005 2010 2015 2020

2e+05

4e+05

6e+05

3e+05

4e+05

5e+05

6e+05

−60000

−40000

−20000

0

20000

40000

−1e+05

−5e+04

0e+00

5e+04

1e+05

Time

Figure 6.13: Seasonal decoposition using STL.

Pro Tips: Not all time series will be seasonal, but STL will always find a seasonal pattern by design. When
conducting seasonal decomposition, consider comparing the size of the seasonal component to the trend. If
the absolute maximum of the seasonal component is infintissimally small relative to the trend, then even if
a seasonal pattern existed, it might not merit analytical attention.
Extract series
polb$scaled <- scale(polb_stl$time.series[,3])

Set data and z-score thresholds
ggplot() +

geom_point(data = polb, aes(x = date, y = scaled), colour = "grey") +
geom_point(data = subset(polb, abs(scaled) >= 3),

aes(x = date, y = scaled), colour = "red", size = 2) +
geom_hline(yintercept = c(-3, 3), linetype = "dashed") +
ylab("Z-Score") + custom_theme

6.6 Finding visual correlations
In addition to visually detecting patterns, EDA is useful for finding relationships across variables. Policy
and decision makers have limited time and can only focus on a distilled set of important factors. To help
structure the problem space, simple bivariate plots are an efficient option to identify correlations.

Scatter plots are the typical starting point. An observation is mapped into a two-dimensional area with one
variable on the vertical axis and the other on the horizontal axis. The intersection of the values is a point.
In R, scatter plots are easily rendered using geom_point (ggplot2 package). Despite their widespread use,
there is still room for creativity when designing a scatter plot, especially when faced with a large dataset.
The insights derived from a plain vanilla scatter plot can easily be crowded out—a plethora of points conceal

106 CHAPTER 6. EXPLORATORY DATA ANALYSIS

−2

0

2

2000 2010 2020
date

Z−
Sc

or
e

Figure 6.14: Z-score of the noise component for the total container volume at the Port of Long Beach.

meaning.

The simplest of tweaks to the size and opacity (alpha) of points can work wonders. In Figure 6.15, we
compare a basic and stylized plot using the cty dataset. Graph (A) illustrates the crowding problem—it is
difficult to see the center mass of the point cloud. By lowering the alpha value, we make each point more
transparent. When two or points overlap, the opacity values add up and allow the data to naturally highlight
dense regions.
Set base data for plot
p <- ggplot(cty, aes(x = ba, y = inc / 1000)) +

ylab("Median Income") + xlab("Percent college educated") +
custom_theme

Standard scatter plot
p1 <- p + geom_point() +

ggtitle("(a) Traditional scatter")

Scatter plot with transparency
p2 <- p + geom_point(size = 0.5, alpha = 0.2, colour="navy") +

ggtitle("(b) Scatter (alpha = 0.2)")

Interpreting shapes. The shape of point clouds are good approximations of correlations. The Pearson’s
Correlation Coefficient is the standard metric for measuring the strength and direction of the relationship
between two variables, X and Y . It is given as the covariance (cov(X, Y)) divided by the product of the
standard deviations σX and σY :

ρX,Y = cov(X, Y)
σXσY

=
∑n

i=1(Xi − μX)(Yi − μY)
∑n

i=1(Xi − μX)2
∑n

i=1(Yi − μY)2

In Figure 6.16, we simulate the data for five scatter plots, each of which illustrates different values of ρX,Y . A
value of ρ = 0.7 indicates a strong positive relationship as the point cloud moves up and to the right—when
one variable increases, the other does as well. When ρ = −0.9, two variables are said to have a negative
or inverse correlation in which one will increase, while the other will decrease. An absence of a correlation
(ρ = 0) appears as an amorphous point cloud without direction.

6.6. FINDING VISUAL CORRELATIONS 107

50

100

0 20 40 60 80
Percent college educated

M
ed

ia
n

In
co

m
e

(a) Traditional scatter

50

100

0 20 40 60 80
Percent college educated

M
ed

ia
n

In
co

m
e

(b) Scatter (alpha = 0.2)

Figure 6.15: A comparison between a basic scatter plot and a stylized plot for county-level variables.

Rho = −0.9 Rho = −0.5 Rho = 0 Rho = 0.3 Rho = 0.7

Figure 6.16: Scatter plots illustrating correlations of varying strength.

108 CHAPTER 6. EXPLORATORY DATA ANALYSIS

Note that the previous plots exemplify well-behaved linear relationships. When the shape of a plot is anything
other than a “fuzzy” line, keep digging as there may be other forces at play. Figure 6.17 illustrates five common
types of patterns in scatter plots:

• Non-linearities indicate two variables are related but in a non-constant fashion. In other words, the
point cloud bends.

• Discontinuities occur when there is a break in the trend, oftentimes manifested as step change (a sharp
vertical shift in the point cloud) or slope change. A discontinuity is a great opportunity to learn about a
possible event or policy change. In social science, discontinuities are highly prized as they can facilitate
causal inference, but could also indicate a change or error in how data is collected.

• Slope changes are a type of discontinuity in which the slope of the point cloud tilts up or down at a
clear kink.

• Stepwise patterns is a special case of a discontinuity in which the point cloud is vertically shifted at
two or more thresholds. While stepwise patterns can also be highly prized discontinuities, they may
also simply be an indication that different tranches of data collection came online at different times or
even analytical error—one of the variables is discrete values rather than continuous.

• Distinct clusters indicate that two variables can be treated as coordinates that can identify the con-
centration of observations rather than as a straight linear relationship.

Whatever the explanations may be for these empirical quirks, scatter plots expose intricate patterns in the
data that would otherwise be overlooked by a summary statistic. If not adequately handled, these quirks can
introduce unexpected biases and inaccuracies to a data science project.

Non−linear Discontinuity Stepwise Slope change Distinct clusters

Figure 6.17: Common patterns that arise from scatter plots.
’

6.6.1 Visual analysis on high-dimensional datasets
Modern datasets are increasingly high-dimensional (containing many variables), which poses a challenge to
examining every bivariate relationship. But what if EDA can be scaled to large datasets, data scientists
could focus on promising leads so efforts are more effective. Graph matrices use small multiples or many
small graphs, to summarize entire datasets on one canvas. We consider two types: correlation matrix clusters
similarly behaving variables and a Scatter Plot of Matrices (SPLOM) to provide details for a select group of
variables.

We illustrate graph matrices using the Federal Reserve Bank of Philadelphia’s Real-Time Dataset for Macroe-
conomists (Federal Reserve Bank of Philadelphia 2019).12 The dataset has 59 variables highly important
metrics such as the number of housing starts in the US (hstarts) and the industrial production indices (ipt
and ipm)

load("data/econ_vintage.Rda")

A Correlation Matrix produced using the cor function can be stylized to highlight and cluster simi-
lar continuous variables. Using the corrplot package, each Pearson correlation is color-coded to indicate

12Economic numbers are published as vintages, meaning that a given quarter’s data will be revised each time a new release
is made available. The data is “real-time” as the Philadelphia Fed archives the data based on each vintage so that the history
of an estimate can be traced.

6.7. BEYOND THIS CHAPTER 109

direction—blue is positive and red is negative—and the size of its circle indicates magnitude. As the cor-
relation matrix is symmetrical around the diagonal, we only need the upper half of the correlation matrix
(type = "upper"). Variables should be sorted into co-located related variables. One approach clusters vari-
ables together using a hierarchical clustering algorithm13 by specifying order = "hclust", which produces
distinct pockets correlations that are easy to isolate for review. Alternatively, the matrix can be sorted by
common direction of correlation using the angular order of the eigenvectors (not shown)—a more esthetically
pleasing choice.

As shown in Figure 6.18, the correlation matrix exhibits five clusters distributed along the diagonal, each
of which contains a cluster of positively correlated variables. The upper left cluster, for example, contains a
set of economic consumption variables, such as producer price index for finished goods (pppi) and personal
consumption of goods (pcong).
Calculate correlations
pacman::p_load(corrplot)

Produce correlation matrix that calculates pairwise relationships
cor_mat <- cor(econ[,-1], use = "pairwise.complete.obs")

Render plot
corrplot(cor_mat, type = "upper",

tl.col = "darkgrey", tl.cex = 0.5,
order = "hclust")

A Scatter Plot of Matrices can evaluate the consumption variable cluster in more depth. Rather than
reviewing each bivariate relationship one at a time, SPLOMs concisely summarize univariate and bivariate
patterns in a graph matrix.

The pair.panels function (psych package) constructs a SPLOM (Figure 6.19) in which each plot matrix
cell contains a Pearson correlation scaled by the size of the value, histogram or scatter plot. The histograms
along the diagonals indicate that all but one variable have a clear peak. Most of the scatter plots below the
diagonal indicate that all variables in the cluster are indeed positively correlated with a few exhibiting slight
non-linearities (e.g., nconhh versus ncongm).

It is evident that SPLOMs generate a large amount of information to be packed onto one canvas, therefore,
it is recommended using this tool on large screens to give enough space to render the patterns. If this is not
an option, use SPLOMs in smaller subsets of up to 10 continuous variables. Ultimately, the use of any of
these graph matrices requires context and inspiration—the goal of the data science project is to motivate
how graphs should be interpreted.
Load psych package
pacman::p_load(psych)

Extract set cluster of variables
pos <- c("pcong", "pconhh", "nconhh", "ncongm", "pconhhm", "pcpi", "pppi")
abridged <- econ[, pos]

Render plot
pairs.panels(abridged, method = "pearson")

6.7 Beyond this chapter
Most data projects start with an Exploratory Data Analysis. They present an opportunity to inform policies
and analytical strategies using data, requiring careful attention to be paid to how insights are communicated.
Flashy graphs can be easily created but can just as easily fail in communicating relevant information to an

13We will revisit hierarchical clustering in Chapter 11.

110 CHAPTER 6. EXPLORATORY DATA ANALYSIS

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1pc
on

g
pc

on
hh

nc
on

g
nc

on
hh

nc
on

gm
nc

on
hh

m
pc

on
gm

pc
on

hh
m

pc
pi

pp
pi

rc
on

sn
pm

nc
on

sn
pm

rc
on

sn
p

nc
on

sn
p

op
h

rg rg
f

nc
on

sh
hm

rc
on

sm
rc

on
sh

hm
nc

on
sh

h
rc

on
s

rc
on

sh
h

pp
pi

x
ul

c
cu

t
cu

m
p pc

on
sh

h
pc

on
sh

hm
pc

on
x

pc
pi

x
rg

sl
no

ut
pu

t
hs

ta
rts

re
x

rim
p

rin
vr

es
id

hs rin
vb

f
ro

ut
pu

t
ip

t
ip

m
em

pl
oy

_l
ev

el
em

pl
oy

_p
ct

_c
hg

h hg pc
on

sn
p

pc
on

sn
pm

rc
on

dm
rc

on
nd

m
rc

on
gm

rc
on

m
rc

on
hh

m
rc

on
g

rc
on

d
rc

on
nd

rc
on

rc
on

hh

pcong
pconhh

ncong
nconhh

ncongm
nconhhm

pcongm
pconhhm

pcpi
pppi

rconsnpm
nconsnpm

rconsnp
nconsnp

oph
rg

rgf
nconshhm

rconsm
rconshhm

nconshh
rcons
rconshh

pppix
ulc

cut
cum

p
pconshh
pconshhm

pconx
pcpix

rgsl
noutput

hstarts
rex
rimp

rinvresid
hs

rinvbf
routput

ipt
ipm

employ_level
employ_pct_chg

h
hg

pconsnp
pconsnpm

rcondm
rconndm

rcongm
rconm
rconhhm

rcong
rcond
rconnd

rcon
rconhh

Figure 6.18: Color-coded correlation matrix sorted by clusters of correlated variables. Only the upper triangle
of the correlation matrix is shown.

6.7. BEYOND THIS CHAPTER 111

pcong
−2

2
0

15
−1

0
5

−5 5

−2 0 2 4

0.95

pconhh

0.62

0.69

nconhh

0 2 4 6

0 5 15

0.59

0.48

0.49

ncongm

0.69

0.64

0.29

0.78

pconhhm

0 4

−10 0 10

0.74

0.73

0.55

0.81

0.87

pcpi

−5
5

0.73

0.67

0
40.46

0.80

0
40.83

0.84

−20 0

−2
0

pppi

Figure 6.19: Scatter plot of matrices (SPLOM) showing univariate histograms, bivariate scatter plots, and
Pearson correlation coefficients.

intended audience. Undertake EDA so you gain an intuitive understanding of the patterns and quirks of the
data, but tailor your communication strategy to your intended audience.

Communication is key. When communicating to technical audiences, more information is better. Having
detailed graphs in hand makes it easier to answer challenging questions and inspire confidence. Policy audi-
ences, in contrast, like high-level stories—narratives that paint a picture. Too much information can overload
policy audiences and even cause them to lose confidence in the analysis. What is the appropriate balance to
strike? Keep the following best practices in mind:

Every plot should have a clear one-line takeaway. Data scientists should make it easy for their audiences to
re-tell their stories with high fidelity. Hold yourself to the following standard: only present graphs that lend
themselves to a clear one-sentence takeaway. If you need to think through the interpretation of your own
graph, imagine the difficulty faced by a non-technical audience.

As for design, simpler is better. Graphs should be neat, minimalistic, and well-labeled. Consider using fewer
colors, but avoid the default styles. Constructing your own custom styling will subtly signal effort and care
put into each graph. Avoid busy visuals, however, that does not mean less volume. For a masterful treatment
of information display, review Tufte (1993).

Not all information is relevant. What matters to a statistician will invariably differ from a policy advisor.
There are only a few types of graphs that are intuitive to all audiences. Time series line graphs illustrate
increasing or decreasing trends, while bar graphs show categorical distributions – both show context. But
graphs about data quality such as time series outliers plots, quantile plots, kernel density plots, and corre-
lation matrix heatmap will likely be pertinent to more data-savvy audiences like statisticians, economists,
and other researchers.

Visualization. We recommend investing effort to master the ggplot2 library to hone your craft and stylistic
choices. Online reference materials contain a rich variety of examples (see https://ggplot2.tidyverse.org/
reference) that can be copied and executed in console. Experimenting with the varieties of geom functions

https://ggplot2.tidyverse.org/reference
https://ggplot2.tidyverse.org/reference

112 CHAPTER 6. EXPLORATORY DATA ANALYSIS

will go a long way in building strong visualization muscle memory. While online references are useful, consider
a more thoroughly worked collection of hands-on examples in R Graphics Cookbook: Practical Recipes for
Visualizing Data by Winston Chang—a standard starting point for ggplot2.

As EDA can be the beginning and end of a data science project, a static graph can at times seem anti-climatic
to audiences. In recent years, R’s core functionality has been extended to interactive web visualizations
making it possible to rapidly produce sleek, tangible deliverables. Rather than writing code in HTML, CSS,
and JavaScript, data scientists can write R code that outputs visualizations that can be rendered in web
browsers. For example, the flexdashboard package makes it possible to layout a dashboard in RMarkdown
(see https://rmarkdown.rstudio.com/flexdashboard), then render an HTML file. The various visual elements
in the dashboard can be sourced from any number of HTML Widgets (see https://www.htmlwidgets.org/)
such as the leaflet package for interactive web maps or the plotly package for a broad variety of graphs.
For more on visualization products, see Chapter 14—Data Products.

https://rmarkdown.rstudio.com/flexdashboard
https://www.htmlwidgets.org/

Chapter 7

Regression Analysis

7.1 Measuring and predicting the preferences of society
Linear regression is the statistical workhorse of the social and physical sciences. At its core, regression is
a fairly simple method that fits a line (or a curve) through a set of data points. But the technique can be
much more than just fitting a line. It can be thought of as a way to quantify how a variable y (a outcome,
dependent, or target variable) tends to change as input variables X (the explanatory or independent variables)
change. In fact, many models we build follow the basic form:

y = f(X)

Or y is a function of a set of input variables X. Using this basic framework, policy researchers have been
able to dissect some of the most challenging social issues that we face today.

One of the most useful properties of regression is its ability to “control” for different factors in order to
distill the story about a single variable.1 Housing prices, for example, are extraordinarily complex as they
reflect a market’s willingness to pay for an amalgam of housing and neighborhood characteristics. A house
has attributes that add to and detract from its value, such as its size, materials, qualities, etc. Its proximity
to amenities like transit, parks, and commercial districts also influence its value. Together, these layered
effects make housing prices a perfect medium through which policy researchers can study how people value
virtually anything.

Harrison and Rubinfeld (1978) famously analyzed the willingness to pay for clean air. By using aggregate
data for the US Census tracts for the Boston metropolitan area, the study associated the median value (W)
of owner-occupied housing units with the Nitrous Oxide concentration (NOX), household income (INC),
and persons per dwelling unit (PDU). The contribution of each variable—known as a coefficient—reflects
the effect of one additional unit of the input variable on the target variable. In the context of economics,
a regression that associates the price of a good with its observable qualities are known as a hedonic price
model. By applying a hedonic price model, the researchers found that households were willing to pay more
for better air quality ($189 for one part per million), but higher income households were more willing to pay
twice as much as lower income households.

W = −581 + 189 NOX + 12.4 INC − 119.8 PDU

The air quality study was observational—one in which the researchers did not have control over which
subjects (units of analysis) are assigned to treatment and control groups. While these studies have less

1Some quantitative researchers may opt for the word “adjust” rather than “control”. As we will later see, including a variety
of factors in a regression adjusts the model to account for sources of information.

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_7

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_7

114 CHAPTER 7. REGRESSION ANALYSIS

power to claim causality than experimental studies, the air quality study was influential in its time. It
illustrated that society’s values are engrained in housing prices, but require some clever math and study
design to unlock it.2 Since Harrison and Rubinfeld (1978), research techniques for policy have advanced as
policy researchers have recognized that identifying a policy effect is quite challenging—an observed effect
could be easily confounded by other unobserved factors. Thus, regression alone is not sufficient to claim
causality.

In the late 1990s, Black (1999) took on one of the more challenging problems in public policy: estimating
the value of school quality. In the United States, housing prices differ from one district to another, but
quantifying how much is attributable to school quality was a speculative affair. To distill the value of school
quality, Black turned to a quasi-experimental approach known as regression discontinuity design, which
assumes that observations immediately on either side of a sharp threshold are no different than one another.
Thus, for houses located immediately at a school district boundary, the difference in the housing prices can
be attributed to the effect of school quality. Focusing on Massachusetts’ housing market, Black estimated
a hedonic price model to control for differences in housing characteristics, finding that within a 0.15-mile
area around the district boundaries, parents are willing to pay 2.5house was given a 5not only serves as a
milestone in policy research but showed the flexibility of regression techniques.

Regression can even go beyond quantitative storytelling. By shifting the focus from why to who and what,
a regression model can predict what may come to pass with a reasonable degree of precision. Interestingly,
housing price prediction is one of the best known and most visible examples of regression. Tech companies
such as Zillow and Redfin predict sales prices to help inform prospective buyers, set expectations, and add
utility to their real estate service offerings. While the underlying techniques are proprietary, early versions
of Zillow’s models have incorporated regression models (Thind (2016)), while recent developments rely on
sophisticated machine learning techniques to improve housing price prediction (Humphries (2019)).

This chapter is the first of seven chapters on models that can surface insights from data. Regression is the
go-to crowd pleaser—it often delivers reasonable results and is the gateway to more advanced techniques. We
begin with simple linear regression, examining the case of associating a target variable with a single input
variable. Then, we consider how regression can be used to test hypotheses in the data—a common application
in policy research. As the world is a complex place, we expand into multiple regression and investigate how
to address quirky patterns that tend to appear in data. We close the chapter with a discussion on selecting
from a set of regression models and the pros and cons of more complex regression models.

7.2 Simple linear regression
Because linear regression focuses on fitting a line through a set of points, it is helpful to recall the formula
of a line:

y = mx + b

where m gives the slope of the line and b gives the y-intercept.3 In the land of regression, we tend to write
the equation slightly differently:

yi = β0 + β1xi1

where β0 denotes the y intercept, and β1 refers to the slope. The subscript i is an index that indicates the ith

observation in the dataset. Figure 7.1 plots a line with an intercept of 5 and a slope of 0.5, i.e., y = 5+0.5x.4

For the moment, let’s focus on the idea of simple linear regression, which relates one target variable (y) to
one input variable (x). The pair of variables are plotted in Graph (A) of Figure 7.2. Our eyes can fit a line

2In fact, the underlying dataset is a standard “toy” dataset used for teaching statistics and regression.
3Recall the classic definition of slope: rise over run (or the change in y divided by the change in x).
4Regression jargon: You will generally hear/see “intercept” rather than “y-intercept”.

7.2. SIMPLE LINEAR REGRESSION 115

2.5

5.0

7.5

10.0

−5 0 5 10
x

y

Figure 7.1: A line.

through the points. If we assume that y and x are related, we can describe that relationship by a simple
line—i.e., an intercept and a slope. But in theory, there are infinite potential lines that could fit through a
set of points. So how does linear regression pick one line out of all of these possibilities? Let’s draw three for
good measure (see Graph (B)).

2.5

5.0

7.5

10.0

−5 0 5 10
x

y

(A) Data

2.5

5.0

7.5

10.0

−5 0 5 10
x

y

line 1

line 2

line 3

(B) Candidate lines

Figure 7.2: Simple linear regression summarizes the relationship of two variables y and x. Graph (A) shows a
scatter plot of some data, whereas Graph (B) illustrates three candidate lines that could fit the data, albeit
imperfectly.

How do we choose the best line for a given dataset? Line 3 looks to be clearly worse than the other two lines,
but why? And how would we choose between Line 1 and Line 2? Is there a better line out there? All of these
questions push us toward a bigger question: How can we formalize the concept of fit so that we can choose
a line in a reasonable, repeatable, objective, and transparent manner?

The simple answer to this big question: Use the data. In fact, all methods we describe in the remainder of
this text use the data to inform the best model. For any line that we draw, we can see how well it fits each

116 CHAPTER 7. REGRESSION ANALYSIS

point in the data but checking how close the line is to each point. If you think of the line as a prediction ŷi,
then the distance between our proposed line and the actual data point gives us the error εi based upon the
prediction. Let’s draw each of these errors for Line 1 in Figure 7.3.

0.0

2.5

5.0

7.5

10.0

−5 0 5 10
x

y

line 1

Figure 7.3: Diagnosing fit: Errors from line 1.

Each of the vertical gray lines connecting line 1 to a black point from the dataset illustrates the error from
predicting that data point with the line. In regression land, this error gets a special name: the residual.
Formally, we define the residual as the difference between the observed value (yi) and the predicted value
(ŷi), i.e.,

εi = yi − ŷi

where εi refers to the residual. The predicted value for y (i.e., ŷi) comes from plugging in the associate value
of x into the line’s equation. For example, the equation underlying line 1 is ŷ = 2.5 + 0.25x. To produce a
prediction for observation (x = 0, y = 3.75), we plug in x = 0 (and get ŷ = 2.5).

Looking at the residuals from line 1, it seems clear that there’s room for improvement. For instance, if the
whole line were shifted up, we would reduce the size of all residuals. In addition, if we increased the slope—
making it steeper—we would also reduce nearly all of the residuals. This type of reasoning is essentially what
the machinery of linear regression works to choose the line that best fits a dataset: these methods attempt to
minimize some measure of error.

7.2.1 Mean squared error
In the classical linear regression model, the goal is to minimize the mean squared error. Mean squared error
(or MSE) is essentially what the name implies: it is the mean of the squared errors (the squared residuals),
i.e.,

Mean squared error (MSE) = 1
n

n∑

i=1
ε2i

Why do we square the error term? One might think that the objective should instead be to minimize the
total (summed) error or take the mean of the residuals. However, there is some clever logic behind the MSE:

7.2. SIMPLE LINEAR REGRESSION 117

1. When we sum a positive and negative residual, they effectively cancel each other leaving little for a
model to use to fit the line. You may have many positive errors and one huge negative error, yet your
sum (or mean) could be very close to zero. To get around this issue, data scientists will occasionally
use mean (or total) absolute error—replacing the square of the residual with the absolute value of the
residual (i.e., |ε|).

2. Square errors turn out to be very mathematically tractable, meaning they are easy to work with in
matrices. Summed absolute value does not have this advantage.

3. MSE is more sensitive to values farther from the center of the data (for the input variables). For some
people, this sensitivity to outliers is a problem. For others, it is a selling point. We will provide more
discussion later this chapter and let you decide.

For now, minimizing the MSE will be our objective function.

7.2.2 Ordinary least squares
The secret sauce of a linear regression model is it chooses the line of best fit by finding the line that minimizes
the mean squared error. The method that gives this best-fitting line—from the perspective of minimizing the
mean squared error– is called ordinary least squares (or OLS for short). OLS provides the line that minimizes
the mean squared error for your dataset. Even if there is any other candidate line that looks promising, OLS
will find the smaller MSE.5 In Figure 7.4, OLS demonstrates its prowess over the data.

2.5

5.0

7.5

10.0

−5 0 5 10
x

y

OLS

Figure 7.4: Diagnosing fit: OLS is best (for minimizing MSE).

While OLS does an impressive job at fitting a line through a dataset, how does OLS actually come up with
this line? Where do the numbers come from?

While we will rarely need to calculate the OLS intercept and slope coefficient by hand, in the case of one
target variable and one input variable, writing the math actually offers some insights into the magic behind
OLS. But first, a bit of notation. It is standard notation to use Greek letters as the unknown parameters in
our model. Given a simple linear regression, the model takes the form:

yi = β0 + β1xi,1 + εi

where y denotes our target variable (or dependent variable), β0 references the (unknown) intercept, x refers to
our single input variable (or independent variable), β1 gives the slope of the line, and εi represents unobserved

5If the goal is to minimize the mean absolute error, then OLS is not best. Change the objective function and the algorithm
will find the new winner.

118 CHAPTER 7. REGRESSION ANALYSIS

errors in the model. We want to estimate β0 and β1, but we only observe y and x. Our task is to estimate
β0 and β1 using only what we “know” (i.e., our data: y and x). Finally, we will refer to estimators by adding
a hat to the parameter that the estimator estimates. For instance, β̂1 estimates β0.

OLS estimates the slope coefficient β1 using the correlation between y and x (recall that correlation measures
the strength and direction of the linear relationship between two variables), the standard deviation of y, and
the standard deviation of x.6 Specifically,

β̂1 = Cor(x, y)sy
sx

which says that the OLS estimate for the slope coefficient comes from multiplying the correlation between
x and y by the ratio of their standard deviations.

Let’s think about the intuition of this formula for a minute. First, the coefficient is based upon the correlation
between the two variables, which makes a lot of sense. When the correlation (the strength of the linear
relationship) is strong (close to -1 or 1), the coefficient will be larger. When the correlation is small (a weak
linear relationship with correlation near zero), the estimated coefficient moves closer to zero. Furthermore,
the sign of the coefficient will match the sign of the correlation between y and x. This part also makes a lot
of sense, as the correlation indicates whether y tends to increase or decrease as x increases—we want the
estimated slope coefficient to match the correlation. Finally, the ratio of the standard deviations tells us how
much y relative to x. If y covers a lot of distance, relative to a small distance in x, then we want a steeper
line. If y barely changes (a small standard deviation) relative to the variation in x, then the slope should be
approximately zero.

The formula for the OLS estimator of the intercept is simpler:

β̂0 = y − β̂1x

where y and x denote the mean of y and x, respectively.

One way to interpret this equation is that OLS will run its line (with slope β1) through the point (x, y)—a
point that sits at the means of the two variables. We can calculate the y-intercept of the OLS regression
line by starting at this point of the two means and following the line for x units until we hit the y-axis
(Figure 7.5).

7.2.3 DIY: A simple hedonic model
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch07-hedonic.Rmd.

To put regression to the test, let’s estimate a regression model. The basic linear regression function in R is
lm, which stands for linear model. To run a regression with the lm function, we need to provide lm with a
formula where the target variable on the left-hand side (LHS) is separated from the input variables on the
right-hand side (RHS) by a tilde (i.e., “~”"). If the variables are part of an data.frame or similar object,
then we will also need to indicate for R the name of the object using the data argument in lm. For example,

lm(y ~ x, data = my_data)

will regress the variable y from the data frame my_data on the variable x (also from my_data). This phrase
“regress y on x” is the standard way to refer to your target and input variables: you regress your target variable

6Also recall that the standard deviation is simply the square root of the variance. The (sample) variance of a variable
x = {x1, . . . , xn} is s2x = Var(x) = 1

n−1
∑n

i=1(xi−x) (where x = 1
n

∑n

i=1 xi, i.e., the mean of x). Thus, the standard deviation

of x = sx =
√

Var(x). The correlation between two variables x and y is given by Cor(x, y) = Cov(x, y)
sxsy

, where Cov(x, y) =∑n

i=1
(xi−x)(yi−y)
n−1 is the covariance of the two variables. It is also worth remembering that correlation is bounded between −1

(a strongly linear negative relationship) and 1 (strongly linear positive relationship), whereas covariance is unbounded.

https://github.com/DataScienceForPublicPolicy/diys

7.2. SIMPLE LINEAR REGRESSION 119

x, y⎞
⎠

⎛
⎝

2.5

5.0

7.5

10.0

−5 0 5 10
x

y

OLS

Figure 7.5: The OLS regression line passes through a point at the means of the two variables.

on your input variable(s). Note the terminology is different depending on the context. Social scientists use
outcome and explanatory variable. Computer scientists use target and input feature. General data analysts
use dependent variable and independent variable. But data scientists use target and input variables.

For this example, we use a sample of n = 12687 residential property sales from 2017 and 2018 in NYC.
Load readr package
pacman::p_load(readr)

Read in .csv of property sales
sale_df <- readr::read_csv("data/home_sales_nyc.csv")

While the dataset (home_sales_nyc.csv) contains a number of interesting variables, we focus on the rela-
tionship between a property’s sales price (the aptly named sale.price variable in the dataset) and the
property’s size (measured in square feet, i.e., the variable gross.square.feet). Before running any analy-
sis, let’s plot the data to check if it is in good shape.7

ggplot(data = sale_df, aes(x = gross.square.feet, y = sale.price)) +
geom_point(alpha = 0.15, size = 1.2, colour = "blue") +
scale_x_continuous("Property size (gross square feet)", labels = scales::comma) +
scale_y_continuous("Sale price (USD)", labels = scales::comma) +
custom_theme

In NYC’s expensive housing market, larger properties unsurprisingly cost more, but the relationship is not
as strong as we would have expected. Let’s run the regression. Our target variable is sale.price and our
only input variable is gross.square.feet—both of which are contained in the data frame sale_df. We feed
all of this information to the lm function, which we assign to an object named reg_est.

reg_est <- lm(sale.price ~ gross.square.feet, data = sale_df)

The lm function returns an lm class object, which is assign to an object named reg_est. If we enter the name
of the object into the console, R will return the estimates for the intercept β0 and the slope coefficient for
gross.square.feet. We, however, are interested in the rich detail about virtually aspect of the regression,
which can be accessed by applying the summary function to the lm object.

7For the custom_theme used to generate Figure 7.6, see Chapter 6.

120 CHAPTER 7. REGRESSION ANALYSIS

0

2,500,000

5,000,000

7,500,000

10,000,000

0 1,000 2,000 3,000 4,000 5,000
Property size (gross square feet)

Sa
le

 p
ric

e
(U

SD
)

Figure 7.6: Residential property sales and property size, 2017–2018.

summary(reg_est)

Figure 7.7: Regressionv output for simple hedonic model.

R prints a summary of the residuals (ε)—the error between the actual sales price and the linear model’s fit.
The size of the residuals is quite large indicating the model is lossy.

After the residuals, are gives the coefficient estimates and several other important statistics. Within the
Coefficients section, R first prints the intercept (i.e., (Intercept)). Wait! We never asked for an inter-
cept. . . or did we? Because intercepts are standard in statistics, econometrics, data science, and essentially
every other empirical field, R defaults to using an intercept—it assumes you want an intercept. If you do
not want an intercept, then you need to put a -1 in your lm equation.8 You will often hear an intercept

8For example, you would write lm(sale.price ~ -1 + gross.square.feet, data = sale_df) if you wanted to estimate the

7.3. CHECKING FOR LINEARITY 121

interpreted as the predicted value for the target variable when the input variable takes on a value of zero.
However, this interpretation can often be misleading (Figure 7.7).

For instance, this interpretation would say that a property in NYC with approximately zero square feet would
be worth negative 46,000 dollars. This interpretation is obviously absurd but what about the statistics makes
this interpretation so absurd? The problem is that this interpretation of the intercept generally ignores the
fact that we only observe data for a certain set of values for the target and input variables—we do not
observe properties smaller than 120 square feet9, and we do not observe any sales below $10,000.10 Making
predictions/interpretations outside of the range of your data is called extrapolation. Extrapolation is not
necessarily bad—sometimes you have to make an educated guess about a data point that is unlike any data
you have previously seen. However, when you extrapolate, you should be aware that you are moving outside
of the range of data on which you fit your model—and the relationships between your target variable and
input variable(s) may look very different in different ranges of the data.

Next: The estimate slope coefficient on gross.square.feet. The estimated coefficient on square feet is
approximately 466.2. First, consider the sign of the coefficient. The fact that this coefficient is positive
indicates that properties with more gross square feet (bigger properties) tend to sell for more money. No
surprises here. The actual value of the coefficient tells us that in this dataset each additional gross square
foot correlates with an increase in sale price of approximately 466 dollars.

But how confident should we be in this estimate? The next three columns provide us with tools for statistical
inference—telling how precise our estimate is. The column labeled Std. Error gives the standard error , the
column labeled t value gives the (Student’s) t-statistic for testing whether the coefficient is different from
zero, and the column Pr(>|t|) gives the p-value for a two-sided hypothesis test that tests whether there
is statistically significant evidence that our estimated coefficient differs from zero (i.e., testing the null
hypothesis β1 = 0). Common practices within statistics and social sciences suggests that p-values below 0.05
indicate sufficient statistical evidence to reject the null hypothesis. Here, because our p-value is much less
than 0.05, we would say that we find statistically significant evidence of a non-zero relationship between a
property’s sales price and its gross square feet at the 5% level.

7.3 Checking for linearity
Why might we care about the relationship between price and property size? We will often encounter normalized
estimates like price per square foot that communicate the value of real estate within a market. It makes the
assumption that the price per square foot is a constant dollar amount, but if the relationship between sale
price and square footage is not exactly linear—meaning that larger properties cost more (or less) per square
foot than smaller properties—then this measure is flawed. It is important to know whether this measure is
indeed flawed as construction, real estate and many costly decisions are dependent on it.

How do we test this hypothesis?

If the relationship between a target and input bends even slightly, the relationship is non-linear—the price
per square foot measure is not accurate. One simple trick to test for linearity is to include a quadratic term
in the regression:

yi = β0 + β1xi,1 + β2x2
i,2 + εi

In which the target (yi) depends on the input xi and its square x2
i . Notice that we still use the term linear

regression even when the relationship between the target and inputs are not strictly a straight line. The
linear in linear regression refers to the fact that the right-hand side of the regression equation can be written
as a linear combination of the unknown parameters (the βs) and the input variables. In other words, linear
means that the βs are multiplied by the input variables.

relationship between the sale price and the property size without an intercept.
9Which is still amazingly small.

10When assembling these data, we restricted the sample to sales between $10,000 and $10,000,000 so as to avoid gifted
properties and extreme values.

122 CHAPTER 7. REGRESSION ANALYSIS

In the case of housing prices, we are mainly interested in whether there is evidence of a quadratic relationship
between sale price and gross square feet by estimating the following regression:

Pricei = β0 + β1Footagei,1 + β2Footage2i,2 + εi

The key evidence is in the β2 coefficient: it needs to differ significantly from zero. To operationalize this in
R, our specification should include + I(gross.square.feet) to indicate that the regression should square
the variable gross.square.feet. First, we estimate the regression model (saving the estimated model as
reg_est2), then the review the results in Table 7.1).

A hypothesis test of the coefficient on the quadratic term (β2 above) rejects the null hypothesis at the 5%
level.11 In practical terms, we have found statistically significant evidence that shows that sales prices are
not constant across building area. Yet, the coefficient β1 is a large negative value, while the size of β2 is quite
small. This may at first seem confounding, but it makes perfect sense once we consider that the marginal
effect of building area is dependent on β1, β2, and the size of the building. Let’s calculate the price per square
foot at 1000 SF and 2000 SF:

price per sfsf=1000 = (−68.91 × 1000) + (0.1284 × 10002)
1000 = 59.49

price per sfsf=2000 = (−68.91 × 2000) + (0.1284 × 20002)
2000 = 187.89

In effect, the small but mighty β2 coefficient overpowers the downward force of β1. The estimate suggests
that the price per square foot conditional on square feet is convex—it grows non-linearly with the size of the
housing unit.

reg_est2 <- lm(sale.price ~ gross.square.feet + I(gross.square.feet^2),
data = sale_df)

summary(reg_est2)

Table 7.1: Fitted linear model that regresses price per square foot
on gross square feet and its square.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 430405 24573 17.52 6.849e-68

gross.square.feet -68.91 25.64 -2.688 0.007194
I(gross.square.feetˆ2) 0.1284 0.005921 21.69 1.835e-102

It can be hard to mentally visualize the regression. Let’s plot housing prices by gross square feet, then
overlay a simple regression (price regressed on square feet) and the quadratic model. The shape of the
fitted regressions confirms the convex shape—which is satisfying from an analytical perspective, but more
complicated for policy. The non-linearities in the price per square foot can prove challenging to communicate
and operationalize policy.

In applied settings, the additional model complexity might not be worth the trouble. We must always ask if
analytical splendor is meaningful in the grander scheme of public service. In this case, the quadratic model
decreased the error by $8,400 (from $463,900 to $455,500)—only a slight increase in accuracy. While the
quadratic model is more correct, choosing a simpler model can still communicate the gist. On the other
hand, non-linearities may indicate that other influences are at play (Figure 7.8).

11The null hypothesis in this case is that β2 = 0, which means there is not a quadratic relationship.

7.4. MULTIPLE REGRESSION 123

0

2,500,000

5,000,000

7,500,000

10,000,000

0 1,000 2,000 3,000 4,000 5,000
Property size (gross square feet)

Sa
le

 p
ric

e
(U

SD
)

Model 1: Linear footage

Model 2: Quadratic footage

Figure 7.8: Comparing linear and quadratic models for sales price regressed on square feet.

7.4 Multiple regression
What if the regression were missing something? Maybe prices are not just about size, but maybe there are
certain parts of NYC that are categorically more expensive than other parts of NYC. Maybe Manhattan is
just more expensive than Queens. Or maybe apartments are different than non-apartments.

In many cases, several—likely many—factors predict the target variable. Whether the goal is to accurately
predict the target variable (e.g., predicting property values) or explain the variation in the target variable
(e.g., why some houses are worth much more than other houses), it is often helpful to bring in multiple input
variables—a concept you will hear people refer to as multiple regression.

Aside from having more input (right-hand side) variables, multiple regression is pretty much the same thing
as the simple-linear regression framework we just covered: you have a single variable as your target variable,
and you estimate a set of parameters (β) by minimizing the sum of the squared residuals. The multiple linear
regression model—now with k input variables—looks like

yi = β0 + β1xi,1 + β2xi,2 + β3xi,3 · · · + βk−1xi,k−1 + βkxi,k + εi

where y still represents our target variable, β0 still gives the intercept, and ε still denotes the unexplained
error in the model. We now have k input variables (x1 through xk) and k + 1 unknown parameters (β0
through βk).

Now that we’ve laid out our expanded framework for multiple linear regression, let’s estimate expand our
NYC property-value regression model.12 Specifically, let’s estimate the model

Pricei = β0 + β1Footagei,1 + β2Agei,2 + β3Yeari,3 + ε

which says that the sale price depends upon an intercept β0,
lm(sale.price ~ gross.square.feet + age + sale.year,

data = sale_df)

12We actually already ran a multiple regression model when we regressed the price on footage and footage squared.

124 CHAPTER 7. REGRESSION ANALYSIS

##
Call:
lm(formula = sale.price ~ gross.square.feet + age + sale.year,
data = sale_df)
##
Coefficients:
(Intercept) gross.square.feet age
-3.244745725486e+07 4.728285046508e+02 2.553170941379e+03
sale.year
1.596294907242e+04

The interpretation of the estimated coefficients changes a bit when you are in a multiple linear regression
setting. We now interpret the coefficients as the relationship between y and xi, conditional on the other
variables. What do we mean by “conditional”? The estimate of the relationship comes from a model that
includes a specific set of other variables. Thus, conditional means we’ve estimated the relationship between
y and xi controlling for the variables.

The multiple regression model that we have constructed makes several important assumptions:

Pricei = β0 + β1Footagei,1 + β2Agei,2 + β3Yeari,3 + εi

We assume that each square footage, age, and year of sale have a linear relationship with price. In other
words, for every additional unit of the input variables, the expected change in price is dictated by the value of
the coefficient estimates βk. While this means we can tell the story behind each input variable, we also make
the large assumption that the coefficient is constant across all values of the input. This linear assumption,
as shown in Graph (A) in Figure 7.9, holds when data are distributed in a specific way. But real-world data
is filled with curve balls as can be seen in Graphs (B) to (D). When linear regressions are not instructed to
account for unfamiliar patterns, the models tend to do poorly. Fortunately, there are simple tricks to capture
these other patterns.

7.4.1 Non-linearities
Regressions can systematically overshoot and undershoot the target in the presence of non-linear relation-
ships. As shown in Graph (B) in Figure 7.9, the regression’s prediction is a rigid straight line, while the
observations weave in and out following a third-order polynomial relationship. To mold the model to the
curve, we can approximate the shape of the relationship using a Taylor expansion, a concept in calculus that
the shape of a curve can be approximated by some set of polynomials. To visual trick for identifying the
order of the polynomial is to count the number of inflection points, then add one. If this were square footage,
we can express the regression specification, which is a third-order polynomial:

Price = β0 + β1Footage + β2Footage2 + β2Footage3 + ε

To apply this specification in R, we write this using the poly function that produces a matrix of k-degree
polynomials:
Third order polynomial term
reg_poly3 <- lm(sale.price ~ gross.square.feet + poly(gross.square.feet, 3),

data = sale_df)

Adding polynomials can mitigate non-linear estimation biases, but also makes model evaluation more compli-
cated. For one, just adding any polynomial might not improve model fit and generally, a more parsimonious
specification is preferred. If we were to estimate the above specification, we would find that the additional
polynomial is not statistically significant and only improved the R-squared by 0.01 relative to the second
order. Interpretation of the coefficients is also complicated by the additional polynomial terms. To interpret

7.4. MULTIPLE REGRESSION 125

(A) Linear Relationship

x

(B) Polynomial

(C) Discrete (D) Discontinuities

Figure 7.9: Examples of different types of relationships between the target (vertical axis) and input variables
(horizontal axis) along with the linear regression prediction (solid line). Graph (A) illustrates a linear rela-
tionship, Graph (B) shows a polynomial relationship—a curve, Graph (C) shows the effect of a categorical
variable, and Graph (D) depicts a sharp discontinuity or slope change at a threshold value.

the effect of Footage, we would need to account for the effects of all terms together. In short, try to keep
your specification as simple as possible.

7.4.2 Discrete variables
The presence of two or more subpopulations in the data can create clusters within the target variable—it is
multi-modal. As seen in Graph (C) in Figure 7.9, two groups appear as parallel groups of observations. The
shape of the plot suggests that there is a positive relationship between x and y—approximately the same for
each subpopulation (i.e., the same β for all), yet the regression erroneously suggests that the relationship is
negative. In short, subpopulations are similar but different.

To rectify this situation, we need to find some way to distinguish between the parallel groups, and discrete
variables hold the key. In a simplified housing market, let’s suppose there are only two neighborhoods—one
area is pricier than the other;

Price = β0 + β1 Footage + δ1 Neighborhood + ε

The new δ1 parameter is the coefficient for a dummy variable, more commonly referred to as an indicator
variable. Dummy variables are a binary vector that indicate whether a given observation belongs to a specific
group, making it possible for a regression to distinguish between the two. In this case, if a house is in
neighborhood P1 (Neighborhood = 1) or neighborhood P2 (Neighborhood = 0):

Neighborhood =

⎡

⎢⎢⎢⎢⎢⎣

P1
P2
P1
...

P2

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

1
0
1
...
0

⎤

⎥⎥⎥⎥⎥⎦

126 CHAPTER 7. REGRESSION ANALYSIS

We only need one vector to represent a two-class case as one district is measured relative to the other—the
“zero” class is known as a reference level. For example if δ1 = 1253, then we can say that, holding all else
constant, houses in neighborhood P1 are on average $1,253 higher than neighborhood P2. In effect, the value
of δ1 modifies the intercept β0 in cases when Neighborhood = 1. In R, the neighborhood variable should
either be converted into a factor or into a binary variable of zeros and ones:

reg_poly3 <- lm(sale.price ~ gross.square.feet + neighborhood,
data = sale_df)

Categorical variables. Of course, there are multiple neighborhoods in a city, and a city as large as New
York has hundreds. The neighborhood variable becomes a categorical with many classes. To flag each city
for a regression, each of the – essentially a matrix of binary values:

Neighorhood =

⎡

⎢⎢⎢⎢⎢⎣

P1
Pk−1
P1
...

Pk

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
0 0 0 . . . 1
1 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎦

If we follow the logic in translating the vector, the k − 1 unique values in neighborhood are represented as
columns in the matrix, but we leave out a category as a reference level against which we compare. This matrix
expansion is referred to as a dummy variable matrix or indicator matrix in more formal mathematical terms.
In computer science circles, representing categorical variables in this format is known as one hot encoding.
Thus, when we add a categorical variable to the regression:

Price = β0 + β1 Footage + δNeighorhood + ε

It is equivalent to expanding the neighborhood variable as a set of dummy variables:

Price = β0 + β1 Footage + δ1 Neighborhood1 + ... + δk−1 Neighborhoodk−1 + ε

Similar to a simple binary variable, the neighborhood variable should either be converted into a factor or
expanded into a dummy variable matrix using model.matrix:
Option 1: Categorical assuming factors
reg_cat <- lm(sale.price ~ gross.square.feet + neighborhood,

data = sale_df)

Option 2: Create dummy variable matrix, thenregress
New data frame with price, footage and neighborhood
new_df <- data.frame(sale_df[, c("sale.price", "gross.square.feet")],

model.matrix(~neighborhood + 0, data = sale_df))

Regress on all variables in new data frame
reg_cat <- lm(sale.price ~ ., data = new_df)

This is a (dire) warning: not all variables that look like numbers are actually numbers. In fact, many
are not cardinal at all. A number of categorical variables are coded as numbers, such as zipcodes, area
codes, interstates, and serial numbers. A particularly egregious case is that of the North American Industry
Classification System (NAICS) codes—a way to classify companies by what they do at varying levels of
detail. For example, the aircraft manufacturer Boeing Co has a six-digit NAICS code of 336411 (“Aircraft
Manufacturing”), which is within sector 33 (“Manufacturing”). McKinsey and Company has a NAICS code
of 541611 (“Administrative Management and General Management Consulting Services”) within sector 54
(“Professional, Scientific, and Technical Services”). The authors have encountered one too many instances

7.4. MULTIPLE REGRESSION 127

in which experienced analysts have treated NAICS as numeric values (assumes a linear relationship with the
target), when in fact, they are categorical. Fight the temptation to treat all numbers as numeric. It helps to
think about your data to avoid rather embarrassing moments.

7.4.3 Discontinuities
A sudden event or paradigm shift can cause a discontinuity in the data. Discontinuities usually appear in one
of two forms: step change and slope change. As seen in Figure 7.10, a step change is a sharp vertical shift in
the level of the data at a threshold whereas a slope change is a rotation of the trend at a threshold. Failure
to detect a discontinuity will bias regression results. In some fields such as economics and epidemiology,
discontinuities are highly prized for causal inference. As we will later see in Chapter 8, if the causal of
the discontinuity is known, then we can derive an estimate of the effect size by examining observations
immediately around the threshold.

Step change Slope change

Figure 7.10: Two types of discontinuities: step change and slope change.

Accounting for a step change is essentially involves a dummy variable in the regression specification that
indicates which records occur before (0) and after (1) the identified threshold. For example, a new Central
Business District (CBD) in a quiet town could lead to a change in housing prices. If prices plotted over
time showed a sharp step change, we could estimate a simple regression where we measure the relationship
between sales price and time (a time trend variable is the date in numeric form), capturing the natural
growth in a housing market. Then, we add a dummy variable (Event) to indicate which sales occurred before
and after the creation of the CBD. The coefficient β2 is the estimate on the step change—the effect of a new
CBD, if any.

Price = β0 + β1Time + β2Event + ε

Accounting for a slope change is slightly more complex. In addition to each Time and Event, an interaction
term combines the effects of the dummy variable with the time trend. When we include the term Time×Event,
the effect on the regression is an additional modifier to the coefficient on time when Event = 1, making time
a piecewise function known as a spline:

Price = β0 + β1Time + β2Event + β3(Time × Event) + ε

In R, we can implement interactions fairly easily. In the example below, we first simulate an event with a
time threshold (March 1, 2018) and add a linear slope change to the sales price (+$5,000 per day). With
the pieces set up, we interact event with time.index with an asterisk in the regression specification. Notice
that we did not need to write out each of the terms as the lm function assumes that all three terms are

128 CHAPTER 7. REGRESSION ANALYSIS

needed.
Create an event
sale_df$event <- 1 * (sale_df$sale.date > as.Date("2018-03-01"))
event_flag <- which(sale_df$event == 1)

Add a simulated slope change
Slope change of 5000 per day
new_price <- sale_df$sale.price[event_flag] + (sale_df$time.index[event_flag])* 5000
sale_df$sale.price[event_flag] <- new_price

Specification with interaction
reg_inter <- lm(sale.price ~ event * time.index, data = sale_df)

7.4.4 Measures of model fitness
Measures of model fitness help identify the best model from alternatives. There are, however, a variety of
different ways of measuring accuracy, each of which is motivated quite differently.

R-squared. Practitioners of public policy and government are most accustomed to metrics that are more
precise and bounded, such as R-squared (R2), sometimes referred to as the coefficient of determination. The
values of R2 are bound by between 0 and 1 (or 0% and 100%), making it easy to conceptualize how much
of the total variance of the target variable is explained by the predictors in the model. More formally, the
measure is given as:

R2 = 1 − RSS

TSS

where

• Residual Sum of Squares (RSS) is
∑n

i ε2i where εi = yi − ŷi
• Total Sum of Squares (TSS) is

∑n
i (yi − ȳ)2—or the variance of the target y

A value of R2 = 0 indicates that a regression model does not explain the variation in the target y, while
R2 = 1 indicates a perfect fit. While this is convenient, more input variables can increase the R2 – just
being present is not enough. Thus, the adjusted R2 penalizes model performance by requiring that each
additional variable contribute more to a model’s performance than just being included.13 This concept is
operationalized by accounting for the sample size n and the number of input variables k—more variables
will dilute the R2:

R2
adjusted = 1 − (1 − R2)(n − 1)

n − k − 1

When we compare the unadjusted and adjusted R2, the former will be larger than the latter.

Error . The residuals from a regression can be summarized as various kinds of error that communicate
different properties. The most common is the Root Mean Square Error (RMSE), or the square root of MSE.
The measure is defined as:

RMSE =
√∑n

i=1(ŷi − yi)2
n

RMSE emphasizes larger errors by squaring the errors, allowing us to avoid models that have larger misses.
Furthermore, RMSE is more interpretable than MSE as it places error in the same scale as the target y. For
example, a RMSE = 0.05 in one model is small relative to a RMSE = 164.

13While we have included Adjusted R2 in this text and R reports it in regression outputs, friends do not let friends use
Adjusted R2. Mills and Prasad (1992) shows that the Adjusted R2 is a poor measure for model selection.

7.4. MULTIPLE REGRESSION 129

Information Criteria measure the quality of a model, assuming there is a theoretical true model and
any estimated model will lose some of the information content. Two information criteria see frequent use in
the field: Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC, aka Schwarz
Criterion). For both AIC and BIC, the objective is to identify the model that produces that smallest value.

AIC (Akaike (1974)), and its small sample counterpart AICc (Hurvich and Tsai (1993)), much like many
other criteria, evaluates the log-likelihood of the data given the parameter estimates, θ̂MLE , and uses a
correction term (2(k + 1)) to dissuade models with unnecessary variables. For AIC, the penalty is simply an
accounting of the parameters estimated in the model.

AIC = −2log(p(y|θ̂MLE)) + 2(k + 1)

AICc adds a secondary penalty which is a function of both k and N , to correct for small samples. This
second penalty disappears asymptotically as the sample size grows.

AICc = −2log(p(y|θ̂MLE)) + 2(k + 1) +
(

2(k + 1)2 + 2(k + 1)
(N − (k + 1) − 1)

)

It is important to note the primary criticism of AIC is its permissiveness of model expansion—when the
number of variables increases relative to the sample size, AIC becomes negatively biased. This leads to
consistent over parameterization which is corrected for small sample sizes in AICc.

BIC is a measure of information content which as a parameter penalty which grows as the sample size
increases (Schwarz and others (1978b)). This often leads to more parsimonious model selection than the
alternatives (Raftery (1995)). BIC for any model can be calculated as,

BIC = −2log(p(y|θ̂MLE)) + klog(n)

This criterion is focused primarily upon selecting the model that is most probable and, to that end, the
calculation for BIC is a rough approximation of the marginal probability of the data given the model.

Which should be used for model selection? The choice of which to use boils down to how much you value
communicating the result to stakeholders (percentages are better) and if you want to manage large errors
(squared errors are better). It turns out the two squared error measures (R2 and RMSE) are two sides of
the same coin: maximizing R2 is equivalent to minimizing RMSE has given a greater penalty on large errors.
Likewise, MAE and MAPE are yield similar results as one another giving equal weight to all errors, except
MAPE is best for larger positive values.

7.4.5 DIY: Choosing between models
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch07-model-selection.Rmd.

Let’s move beyond the rules and diagnostics of regression and put it into action using the house price data.
Our goal in this DIY is to estimate a set of regressions, evaluate the pros and cons of each, and select the
“best” specification. The challenge, however, is that the best model might be different for each use case. The
model that provides the clearest story may not necessarily be the one that produces the best model fit. We
investigate these trade-offs in this section.

Let’s estimate four regressions where each successive specification adds more variables and complex elements:

• Model 1 (mod1) regresses sales prices and building area;
• Model 2 (mod2) adds borough as a categorical variable;
• Model 3 (mod3) incorporates an interaction to estimate borough-specific slopes for building area;
• Model 4 (mod4) adds land area.

https://github.com/DataScienceForPublicPolicy/diys

130 CHAPTER 7. REGRESSION ANALYSIS

By gradually build up the model, we can show the relative effects and contributions of each variable giving a
sense of what is important for interpretation and what is important in capturing the variation in the data.
Simple regression
mod1 <- lm(sale.price ~ gross.square.feet,

data = sale_df)

With borough
mod2 <- lm(sale.price ~ gross.square.feet + factor(borough),

data = sale_df)

Interaction
mod3 <- lm(sale.price ~ gross.square.feet*factor(borough),

data = sale_df)

With Additional variables
mod4 <- lm(sale.price ~ gross.square.feet*factor(borough) + land.square.feet + age,

data = sale_df)

How well does each model perform in practice? We can easily see performance when overlaying the fitted
model on the actual series. In Figure 7.11, we plot the actual (black points) and predicted sale prices (red
points) by gross square footage. Each graph’s label contains the BIC score, which can be extracted from a
model object by specifying:
Obtain BIC
BIC(model_object)

Obtain AIC
AIC(model_object)

In an ideal model, the red and black points would perfectly overlap. Model 1, however, is overly simplistic—it
misses most of the point cloud. Model 2 is an improvement—by accounting for the naturally different price
points by borough. Model 3’s interactions between gross square footage and borough show that the price
curve is different in each part of the city; However, the predictions still resemble five straight lines. By adding
land area and building age in Model 4, the predictions cover more area. From visual inspection, it is clear
that Model 4 offers the best performance. Furthermore, BIC is also at a minimum with Model 4 indicating
that it is the best relative choice.

If we are interested in predicting the values is Model 4 good enough? There are specific guidelines for how
to construct accurate predictions, which we will cover in the next chapter. However, using the models that
we have before us, we can obtain the best-case scenario for model performance by applying summary to
the model object mod4. The residual standard error (RMSE) is RMSE = 384, 415. On the surface, this
might not mean much without context, but when considering that the average housing price in the sample
is ȳ = 665, 012, the value is quite large. In practice, if Model 4 were applied in the wild and produced a
prediction of ŷ = 300, 000, the confidence interval on ŷ would be include zero! In other words, the price could
be anyone’s guess. Good predictions have small intervals—reducing the uncertainty around the prediction.

Ultimately, our example above is illustrative of a fitted line—quite different than a predicted line. The former
shows how the model behaves when given the data it was estimated on, whereas the latter provides a sense
of out-of-sample performance. In the next chapter, we distinguish between estimation, causal inference, and
prediction.

Despite the challenges with predicting housing price, we can still use the regression results to interpret
patterns in the housing market. As we can see in Table 7.214, the size of the regression coefficients change
quite dramatically as new variables and interactions are added. The game is to find some combination of
input variables that produce decent model performance (R-squared, BIC, AIC, RMSE) and with stable

14We used the Stargazer package to co-locate the four model into a regression table much like in academic papers.

7.4. MULTIPLE REGRESSION 131

0

1

2

3

0 1000 2000 3000
Gross Square Feet

Sa
le

s
Pr

ic
e

($
M

M
)

Model 1 (BIC = 366545)

0

1

2

3

0 1000 2000 3000
Gross Square Feet

Sa
le

s
Pr

ic
e

($
M

M
)

Model 2 (BIC = 363486)

0

1

2

3

0 1000 2000 3000
Gross Square Feet

Sa
le

s
Pr

ic
e

($
M

M
)

Model 3 (BIC = 362246)

0

1

2

3

0 1000 2000 3000
Gross Square Feet

Sa
le

s
Pr

ic
e

($
M

M
)

Model 4 (BIC = 361869)

Figure 7.11: Comparison of the four specifications plotted against gross square footage. Black points represent
the actual sales prices, while red points represented the fitted model.

coefficients (i.e., the values do not fluctuate wildly with additional variables). Here, we point out a few key
insights:

Model 1 versus Model 2. The initial estimate for Gross SF is +466.18 in Model 1 but falls to 406.99 in Model
2 with the inclusion of Boroughs. When we combine this insight with the sharp increase in the R2 (0.25 to
0.42), we can conclude that the first model was underfit—it did capture enough of the variability in housing
prices.

Model 2. The Borough variables are estimated relative to Borough 1 (Manhattan)—one of the most expensive
areas in the United States. The negative coefficients thus indicate that housing in other boroughs are,
on average, worth $2 million less than units in Manhattan. Interestingly, the Constant holds the natural
underlying value of property in Manhattan and suggests that even when the property has zero area, the
base price is +$2.8 million. Boroughs are relatively coarse geographic units. Categorical variables with many
levels (e.g., neighborhoods, zipcodes) can provide a more precise local estimate on price. But if cells in the
data are too small (i.e., number of records per level in the categorical variable), predictions can become less
stable and more noisy—there simply is not enough information for the regression to learn from.

Model 3. The introduction of interactions causes a large shift in the coefficients. The interpretation of Gross
SF is different—it is the price in Manhattan, which explains the more than twofold increase in the value.
To obtain the Gross SF for Boroughs 2 to 5, we need simply add the interacted coefficients. For example, to
obtain Gross SF for Borough 2 from Model 3:

θ2 = θGrossSF + θGrossSF×Borough 2

In other words, by adding 1, 043.44, and −817.22, the price per square foot is $226.22, which is markedly
less than the price in Manhattan. The additional complexity increased the R2 by 0.05—not as large as the
change from Model 1 to 2, but is nonetheless useful.

132 CHAPTER 7. REGRESSION ANALYSIS

Finally, in Model 4, we only see a modest improvement in model fit with the addition of the land area and
building age variables. Unlike the other models, the size of the coefficients only shifts slightly, suggesting that
the additional variables have limited effect. Each regression helped to inform a statistical narrative about
housing prices in New York: There is an allure of some boroughs (higher relative price of Manhattan). Space
is relatively scarce and comes at a premium (price per square foot).

7.4.6 DIY: Housing prices over time
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch07-time-series.Rmd.

Time series data are the de facto choice for measuring and tracking trends over time. Most macroeconomic
data, for example, are time series that summarize an economy’s performance and provide a way to gage
how global events influence the markets. In the United Kingdom, housing prices are closely monitored to
understand affordability and the health of the economy. Estimated by the UK’s Office of National Statistics
using data from HM Land Registry, the UK’s Housing Price Index (HPI) measures the price level of real
estate by applying a hedonic model to distill the value of housing holding all else constant (HM Land Registry
Public Data (2019)). But when the price levels are strung together as a time series, it is easy to see how the
market evolves over time. As seen in Figure 7.12, the housing price index was relatively flat until 2013, then
prices began to sharply increase – there is a clear upward trend. The price gently fluctuates over the course
of each year following a regular, fairly predictable pattern—this is a sign of seasonality.

180000

200000

220000

2010 2015 2020
Date

Av
er

ag
e

Pr
ic

e
(P

ou
nd

 S
te

rli
ng

)

Figure 7.12: UK Housing Price Index (Jan 2010 to Oct 2019).

In this DIY, we illustrate how to tame a time series and extract insights seasonal patterns and construct
a simple forecast. When working with time series, there are special rules that we need to follow. We thus
begin by describing the components of a time series and the assumption of stationarity, then we dive into
approaches modeling strategies. To start, let’s import the HPI from ukhpi.csv.
Load package
pacman::p_load(forecast,ggplot2)

Load file
uk <- readr::read_csv("data/ukhpi.csv")

Set data as a time series object
train <- ts(uk$avg.price,start = c(2010,1),freq = 12)

https://github.com/DataScienceForPublicPolicy/diys

7.4. MULTIPLE REGRESSION 133

Table 7.2: Regression coefficient table for four specifications.

Dependent variable:
Sales Price

Area + Borough + Interaction + Other Variables
(1) (2) (3) (4)

Gross SF 466.2∗∗∗ 406.0∗∗∗ 1,043.4∗∗∗ 1,032.6∗∗∗

(7.1) (6.4) (57.4) (56.5)

Borough 2 −2,998,287.9∗∗∗ −637,746.3∗∗∗ −649,531.7∗∗∗

(61,499.6) (198,071.6) (195,070.0)

Borough 3 −2,530,787.4∗∗∗ −1,050,643.6∗∗∗ −1,096,470.7∗∗∗

(60,818.4) (195,726.7) (192,775.2)

Borough 4 −2,748,294.6∗∗∗ −571,516.0∗∗∗ −608,897.1∗∗∗

(60,608.0) (195,120.9) (192,157.4)

Borough 5 −2,902,616.7∗∗∗ −567,646.9∗∗∗ −596,639.5∗∗∗

(60,721.5) (195,327.2) (192,495.5)

Land SF 37.2∗∗∗

(1.9)

Building Age −706.6∗∗∗

(153.6)

Gross SF * Borough 2 −817.2∗∗∗ −866.3∗∗∗

(61.4) (60.5)

Gross SF * Borough 3 −277.0∗∗∗ −290.6∗∗∗

(58.7) (57.8)

Gross SF * Borough 4 −712.3∗∗∗ −761.1∗∗∗

(58.3) (57.4)

Gross SF * Borough 5 −814.2∗∗∗ −889.4∗∗∗

(58.4) (57.7)

Constant −42,584.4∗∗∗ 2,811,606.0∗∗∗ 743,371.4∗∗∗ 801,452.2∗∗∗

(11,534.3) (62,840.6) (194,493.8) (192,296.1)

Observations 12,668 12,668 12,668 12,668
R2 0.3 0.4 0.5 0.5
Adjusted R2 0.3 0.4 0.5 0.5
Residual Std. Error 463,876.1 410,579.7 390,445.8 384,415.2
F Statistic 4,314.3∗∗∗ 1,802.6∗∗∗ 1,256.6∗∗∗ 1,097.3∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

134 CHAPTER 7. REGRESSION ANALYSIS

Some ground rules. Recall the brief aside about Chapter 6. Any time series can be described in terms of
three components:

Y = T + S + R

Where the T is a trend, S is seasonality, and R is the noise component—the leftover information that is not
explained by the trend or seasonality. Each of these components holds a piece of the story of HPI.

Statisticians had discovered in the early days of time series that the data needs to be stationary in order for
analyses to be generalizable. When a series drifts up or down unpredictably, it becomes a moving target—its
mean and variance will change with the trend over time and its autocorrelation structure (how a series
is correlated with its past values) could also change—it is non-stationary. A stationary time series exudes
stability—it has a constant mean and variance and a stable autocorrelation structure over time.

How do we identify a stationary series in practice? First, we should introduce the mechanism for stabilizing a
time series: differencing, or subtracting the previous period from the current (y′

t = yt−yt−1). Any time series
object can be differenced in R applying the diff function to a vector or time series object.15 Differencing, in
effect, calculates a period-to-period change. Such a simple idea can collapse time series with a trend into an
oscillating pattern with a mean of zero—it is quite powerful.

The question then is whether a series requires differencing. Fortunately, statisticians and economists have
devised a battery of tests that build evidence that a series is non-stationary (or the contrary):

• Graph the series. Stationary time series do not exhibit a trend. HPI, in contrast, clearly grows over
time, indicating possible non-stationarity.

• Calculate σ. If we take the difference of a series and find its standard deviation σ falls by half, the time
series may be non-stationary. If we were to difference an already stationary series, σ could actually
increase. The σHPI falls from 24, 411 to 1, 242 when differenced—more evidence of non-stationarity.

• Correlograms plot a series’ autocorrelation function (ACF)—the correlation between a series and its
past values known as lags. In Figure 7.13, the first bar measures the relationship between the current
period (t) and last period (t−1)—the correlation between yt and yt−1. The second bar is the correlation
between yt and yt−2, and so on. A stationary series’ ACF quickly falls to zero with each subsequent lag.
However, the ACF in Graph (A) falls slowly—-ever-so-slightly over 24 lags—adding to the evidence of
non-stationarity. In contrast, the correlogram of the differenced series (Graph (B)) shows a seasonal
ACF pattern—a much better behaved series than its raw version.

In short, the HPI is non-stationary and should be differenced. There are many other tests that lend more
support, such as the Augmented Dickey Fuller Test (ADF test) and other Unit Root tests.
(A) Calculate ACF for unemployment
acf_level <- autoplot(acf(train))

(B) Calculate ACF for first difference
acf_diff <- autoplot(acf(diff(train)))

Plot
grid.arrange(acf_level, acf_diff, ncol = 2)

Quantifying the seasonal patterns. Time series models can be quite complex with complex names like
Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) algorithms.
There are, however, simpler and deterministic approaches that make use of an ordinary regression framework.
With a differenced time series, we can model seasonality through a seasonal dummy model: for a monthly
series, we include 11 dummies, allowing the 12th month to be absorbed by the constant β0:

yt = β0 + δ1mt,1 + ... + δ11mt,11 + εt

15When differencing a series, we automatically lose one observation. For example, making a difference (d = 1) leaves n − 1
observations.

7.4. MULTIPLE REGRESSION 135

0.00

0.25

0.50

0.75

1.00

Lag

AC
F

(A) ACF on unemp.

−0.40

−0.20

0.00

0.20

0.40

0.60

Lag

AC
F

(B) ACF on first difference

Figure 7.13: Correlograms of the unemployment series, unadjusted and differenced.

Notice that we have replaced the record index i with t for time index. Seasonal coefficients are the average
of each month’s price change and should be interpreted relative to the reference month. To put this into
action, we need to first construct a differenced time series (diff.series), which then can be regressed on
each month dummy.16

Difference the series
uk$diff.series <- c(NA, diff(uk$avg.price))

Run linear model
mod_diff <- lm(diff.series ~ factor(month), data = uk)

When we apply summary to the regression object, we can infer when housing prices are more expensive. Figure
7.14 visualizes the regression coefficients and their confidence intervals as a dot-whisker plot. Coefficients
whiskers that cross the dashed line are not likely statistically significant at the 5% level. The plots indicate
that peak prices occur in July (month 8), fetching on average £3,011 (+/- 737.2) more than the reference
period, January. Interestingly, the patterns in September and October are less clear—the coefficients are not
statistically significant at the 5% level. Thus, we can infer that houses sold during the summer fetch higher
prices.

Month 12
Month 11
Month 10

Month 9
Month 8
Month 7
Month 6
Month 5
Month 4
Month 3
Month 2

0 1000 2000 3000

Figure 7.14: Dot-whisker plots visualize the coefficients and their confidence interval.

Mechanics of a forecast. Time series models can also be used to forecast the future price of housing.
While seasonal dummies are easy to interpret, forecasting requires some data gymnastics.17 The ingredients

16Because differencing yields n − 1 records, we add an NA value at the beginning of the differenced series so the transformed
series can be assigned to a column in uk.

17There are simple functions for estimating and producing forecasts, but we have chosen to show the underlying process to

136 CHAPTER 7. REGRESSION ANALYSIS

for constructing a seasonal dummy forecast are a training dataset that is used to estimate a model as well
as an out-of-sample test dataset to apply the model.

First, we construct the out-of-sample set for the next 12 months (time periods 118–129) that contains the
same variable names and data types as were used to estimate the regression. We add these 12 new periods
to an abridged version of the uk data frame.
Construct a forecast set
temp <- data.frame(time.index = 118:129,

month = 1:12,
avg.price = NA,
diff.series = NA)

Add the new periods to the future data
fcst <- rbind(uk[, c("time.index", "month", "avg.price", "diff.series")],

temp)

Often times in policy, practitioners will focus on the expected value ŷt (the forecast line) while ignoring the
forecast uncertainty. In ignoring the uncertainty, decisions are made without considering the risks. In fact,
for every step in the forecast horizon (periods into the future), the uncertainty grows as no new information
is being integrated into the forecast. But, we can make a reasonable guess that the forecast can fall within a
prediction interval. For this reason, data scientists include both the lower and upper bounds of the prediction
interval for context and to help temper expectations. Using the predict function, we score the fcst data
frame and extract the forecast and its 95% prediction interval, then add these columns to the fcst data
frame.
Forecast the first difference
fcst <- cbind(fcst,
predict(mod_diff, fcst, interval = "prediction"))

The forecast on growth ŷ′
t needs to be converted into an estimate of the HPI level. We cannot simply add

the monthly growths, but instead need to “grow” the forecast (ŷ′
t) from a known price level (yt−1). To do

this, the price level for the first out-of-sample period (t = 118) can be obtained by adding the yt−1 + ŷ′
t, or

taking the sum of the known price level in t = 117 and the forecasted growth for t = 118. For all subsequent
periods, we build the forecast off of the forecasted level in the prior period:

ŷt =
{

yt−1 + ŷ′
t if t = 118

ŷt−1 + ŷ′
t if t > 118

Implementing this calculation involves simple algebra and a for loop.
Create yhats
fcst$yhat.level <- fcst$yhat.lower <- fcst$yhat.upper <- NA

Set levels for t = -1
fcst$yhat.level[117] <- fcst$yhat.lower[117] <- fcst$yhat.upper[117] <- fcst$avg.price[117]

Recursively add the first difference forecast to the prior period’s level
for(i in 118:nrow(fcst)){
fcst$yhat.level[i] <- fcst$yhat.level[i-1] + fcst$fit[i]
fcst$yhat.lower[i] <- fcst$yhat.lower[i-1] + fcst$lwr[i]
fcst$yhat.upper[i] <- fcst$yhat.upper[i-1] + fcst$upr[i]

}

give a look inside the seemingly black box.

7.5. BEYOND THIS CHAPTER 137

In Figure 7.15, the price forecast (red) is plotted along with the prediction interval (light red). By month 129
(September 2020), the price level is expected to exceed £240,000 with a prediction interval between £221,310
and £261,417. Notice that the forecast line extends the prevailing trend and retains the seasonal pattern.
While it looks promising and plausible, keep in mind that the seasonal dummy forecast is deterministic—it
is an extrapolation that assumes that trend and seasonality will follow a rigid, predictable pattern. The
prediction intervals expand with the forecast horizon, serving as a reminder the uncertainty grows in the
absence of data.

180000

200000

220000

240000

260000

0 50 100
Time Index

Av
er

ag
e

pr
ic

e
(P

ou
nd

 S
te

rli
ng

)

Figure 7.15: 12-month forecast for HPI (red) and historical series (gray).

7.5 Beyond this chapter
Regression still remains the go-to choice for working with continuous variables. The coefficients are inter-
pretable and help build a story for policy settings. The trained regression model can produce predictions.
However, to ensure the result captures the full story – including nuances in categorical variables, interactions,
splines, transformations—requires careful investigation of the data’s underlying detail. In order to get the
most out of regression, consider these best practices:

Plan your objective. Regression is a flexible tool that can parse out the effect of input variables have on a
target but also produce predictions. The former focuses on how, thus a parsimonious (i.e., fewer variable)
specification tells a clearer story at the potential cost of overlooking finer details. The latter focuses on
anticipating who and what, which can potentially lead a data scientist to include more variables into the
regression to mold to the nooks and crannies of the problem at hand.

Keep your model simple, but not simplistic. It turns out that more complex regression—i.e., more variables—
can lead to complications. In fact, regression can be quite finicky.

• There should always be fewer variables than observations, otherwise, the regression cannot find a
solution for each coefficient. This is known as the ill-posed problem, which has historically required
much manual variable selection to craft a well-specified model. In Chapter 9, we present an easy
strategy to overcome the ill-posed problem in another form of regression.

• When there are many variables but less than the number of observations, a regression model can have
reasonable fitness, but predictions can also be quite noisy. n some ways, too many variables are like
having too many cooks in the kitchen: coefficients will fight for control. In contrast, having too few
variables can fail to capture the underlying pattern in the data, thereby biasing predictions. Striking
a balance sits at the heart of the Bias-Variance Trade-off —finding the right number of variables to
adequately characterize the pattern in the data. In the following Chapter 8, we take a closer look at
this trade-off and its implications on developing a well-behaved model.

138 CHAPTER 7. REGRESSION ANALYSIS

Avoid multicollinearity. One of the potential complications of adding a large number of variables into a
regression model is multicollinearity, or when two or more variables are highly correlated. When variables
are too closely correlated, the regression is unable to decisively attribute weight to one variable versus
another, which in turn leads to coefficients that are large and sometimes with an unexpected direction of
effect (i.e., a negative coefficient when a positive one is expected) making it challenging to interpret the
underlying patterns. Despite these inflated coefficients, multicollinearity delivers valid predictions as long
as the relationship between the correlated the collinear variables remains stable. Otherwise, prediction will
become erratic as the over-sized coefficients will exaggerate the effect of each variable.

Chapter 8

Framing Classification

8.1 Playing with fire
8.1.1 FireCast
How do you predict which buildings in a city are most likely to catch fire?

On an August afternoon in 2007, a fire broke out on the 17th floor of the then-vacant Deutsche Bank Building,
a skyscraper situated across from the former World Trade Center in New York City. Seriously damaged
after the 9/11 attacks, the building had been undergoing hazardous material abatement and controlled
demolition, leading to fundamental changes to the building’s functions and plans. Containment walls and
negative pressure systems caused air to move in an unusual way. Disabled standpipes prevented water from
circulating through the building. The result was a labyrinth of untold dangers. It should not have been a
surprise that when the New York City Fire Department (FDNY) responded, the fire quickly escalated to a
seven-alarm fire incident with 87 units and 475 firefighters on scene (Rivera (2007)). Struggling to navigate
the maze to put water on the fire, fire crews resorted to unconventional methods like pulling hose up the
side of the building. After 7 hours of battling the blaze, the fire was contained, not before two firefighters
succumbed to cardiac arrest from heavy smoke inhalation (Dobnik (2007)). An after-action investigation
found that the deaths could have been prevented had city agencies established information-sharing protocols
and leveraged a risk-based strategy to mitigate and avoid hazards (Hearn, Scoppetta, and LiMadri (2009)).

Such a data-driven strategy would require major updates to how information was used. Since the 1950s,
FDNY building inspections relied on index cards to keep track of inspection schedules. Risk was reliant on
experience—perceived risk. The riskiest buildings were scheduled for inspection at most once a year, whereas
the least risky buildings were inspected at least every 7 years. Of the one-million buildings in New York City,
only one-third are inspection-qualified. Of those 300,000 buildings, FDNY had historically been only able to
inspect at most 10% of the buildings in a given year. This meant that the 7-year schedule was aspirational at
best. Indeed, NYC’s risk mitigation strategy was due for improvements and an algorithmic approach could
do the trick. By associating building characteristics with when fires did and did not occur, inspections could
be more efficiently scheduled using the power of conditional probabilities.

In 2013, the FDNY set out to address the risk management problem by melding data and technology with
their field operations. The idea of smart tech in the fire service was quite alluring. But in reality, it was also
a herculean effort. Fortunately, the Commissioner and First Deputy Commissioner saw that technology had
a role to play at FDNY. Aligned with Mayor Michael Bloomberg’s vision of smart, data-driven government,
they sought to set an example for the nation’s fire services. To lead the charge, the Assistant Commissioner
for Management Initiatives was tasked with leading the change management process, bringing together fire
chiefs, fire officers, and information technology (IT) managers.

Government agencies have a track record of failed technology initiatives. Perhaps the government failure
rate is not higher than any other sector, but it is certainly more visible. Part of the challenge is simply
© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_8

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_8

140 CHAPTER 8. FRAMING CLASSIFICATION

not knowing the territory. FDNY understood the odds and sought to stem the tide by building in-house
technical capacity. The Assistant Commissioner tasked in-house software engineers to meticulously gather
specifications that were then used to develop a digital scheduling platform. Decades-worth of index cards
were digitized and integrated with dozens of databases capturing the state of reported activity within NYC
buildings. But data on its own is not enough for risk targeting—it needs to be structured and converted into
risk. FDNY hired a Director of Analytics to lead the research and development of prediction algorithms to
recommend buildings for inspection and craft the scientific narrative to help socialize and garner support for
its adoption.

On the operations side, buy-in was required. Trust is the substance that converts algorithmic intelligence
into action on the ground. Anyone who has observed firefighters on the fireground (scene of the incident)
will notice that it is a well-choreographed operation—every person knows their part. The same rank and file
structure also meant that change needed to start with leadership. Fire departments have a culture of following
a chain of command. Adopting a new system requires buy-in from the entirety of the firehouse, battalion,
and department. The Assistant Commissioner worked with senior fire personnel including the Deputy Chief
of Fire Operations and a number of Battalion Chiefs to amend Standard Operating Procedures (SOPs) to
use a digital inspection system.

The end result was the Risk-Based Inspection System (RBIS), a firefighter-facing data platform that targeted
buildings with the greatest risk of fire. Three times a week for 3-hour time blocks, fire officers logged onto
RBIS to obtain a list of buildings scheduled for inspection. Buildings were selected using FireCast, a model
developed in-house to predict fires at the building level. In early versions, the prediction model was a simple
logistic regression—a method that is well known for easy interpretation while being able to associate 60
building characteristics to fires. But as the system advanced in its development, more complex algorithms
were incorporated and integrated as much as 7,500 variables. Through FireCast, buildings no longer were
assigned to a risk tier based on human perception, but rather a dynamic risk score that into account the
latest fire ignition patterns.

The algorithm was able to identify buildings with fires over 80% of the time—a degree of accuracy that
surpassed prior attempts. Upon implementing the new system, impacts were tracked through the number of
violations issued. In the first month, the number of safety violations issued grew by +19% relative to what
was possible using the index card system, indicating that FireCast was indeed identifying more buildings with
observable risks. By the second month, violations were only +10% over trend, indicating that fire risk does
in fact exist on a continuum. To measure efficacy, FDNY developed an indicator known as the Pre-Arrival
Coverage Rate (PACR) that measures the proportion of buildings that experienced a fire that was inspected
within some period (90 days) before the fire occurred. Likened to the film Minority Report, the PACR
measures if FireCast could anticipate fires and if fire companies had the opportunity to evaluate priority
buildings. Under FireCast, FDNY had achieved a PACR of 16.5%, which was an eight-fold improvement
over an early attempt made by a Fortune 500 company (Roman (2014), Hamins et al. (2015)).

RBIS/FireCast was launched in 2014 and marked the beginning of a modern renaissance in fire prediction.
Since then, new projects have emerged around the United States such as the Firebird open source system
for Atlanta in 2016 (Madaio et al. (2016)) and a spatiotemporal fire prediction approach for Pittsburgh in
2018 (Singh Walia et al. (2018)).

8.1.2 What’s a classifier?
The RBIS and FireCast is an example of a classification problem—a task in which observations are associated
with a class or label based on its attributes. Labeled examples contain both factual (e.g., what happened,
fire, group A) and counter-factual (e.g., what did not happen, no fire, group B). We cannot learn what makes
buildings with fires different than buildings without fires—there’s no ying without yang. By training a model
to learn from labeled examples, we can predict the label of fresh observations.

Classification is nothing new in everyday life as we use our own mental classification models to contextualize
the world around us. For example, marketers and advertisers are always looking to get product offerings in
front of prospective customers. Marketers will often purchase lists of people and apply models based on past
customer behavior in order to identify those who are most likely yield a sale. The criminal justice system has

8.2. THE BASICS OF CLASSIFIERS 141

incorporated risk classification models like COMPAS to screen people being booked into jail for their chances
of committing a crime in the future (Angwin et al. (2016)). On a more futuristic front, the technology behind
self-driving cars uses a complex array of sensors and cameras that are processed by classifiers among other
algorithms to distinguish between cars, people, motorbikes, and cyclists.

The same is true with fires.

By examining buildings that did and did not catch fire in the past, we are able to learn which characteristics
are associated with a greater risk of fire. We can apply a learned pattern to new records to obtain the
probability of fire, thereby giving fire fighters a sneak peek of what may happen. There can be thousands of
variables that play a role in predicting fires. There are likewise classification algorithms that can learn and
apply patterns.

In this chapter, we gently introduce classifiers, starting with a tour of the basic elements of any classifier,
focusing on methods common in the social sciences. In particular, we introduce logistic regression—a cousin
of linear regression—and describe how the technique can support data-driven narratives and prediction
problems. While the technique is a mainstay of fields invested in causal inference, it has some notable
handicaps, such as an inability to handle certain big data scenarios. We close the chapter by diving into
regularized regressions, such as LASSO and Ridge regression, that are a machine learning spin on classical
approaches.

8.2 The basics of classifiers
While classifiers are similar to regression problems, their anatomy and outputs are quite different. We begin
this section by dissecting classifiers, laying out the expected inputs and typical outputs. Classifiers are
designed to find variables that can separate one class from another. The way in which signal—or meaningful
information that helps predict the target or outcome—manifests itself can easily be seen through visualiza-
tion. Thus, we start this section by developing an intuitive, visual understanding of what constitutes signal
in classification contexts and how accuracy is measured.

8.2.1 The anatomy of a classifier
If fires are truly predictable, we can employ supervised learning to map how input variables can distinguish
buildings that had fires from those that did not. Given a binary outcome Fire we can determine class
membership as a function of the building’s characteristics and other inputs1:

Fire = f(Building characteristics, Location, Complaints, ...)

Similar to regression, the extent to which each input variable contributes to predicting fire is learned from the
data. How importance and contribution are measured differs from one technique to the other. Some methods
produce an interpretable β̂ estimate (e.g., logistic regression) while others are solely focused on extracting the
most signal to produce a generalizable prediction of ŷi (e.g., Random Forest). In all cases, a loss function helps
a classifier gage if it has learned the patterns the best it can. Mean squared error is common for regression
on continuous values, but a classifier’s loss can emphasize different aspects of accuracy, represented through
functions such as log-loss, classification accuracy, F1-Scores, among others. The output of a classifier is a
probability that an observation belongs to a class (g). These probabilities are particularly useful for use cases
focused on prioritization (e.g., inspection, document review) and risk monitoring. Converting probabilities
into a predicted class can be an efficient solution to tag or label data whose disposition is yet to be known
(e.g., add tags images, classifying documents).

1Note that in this example, we only use binary or dichotomous outcomes (e.g., Yes fire, No fire). In classification, outcomes
can be multinomial outcomes in which multiple classes can exist (e.g., full fire, partial fire, smoke alarm, no fire).

142 CHAPTER 8. FRAMING CLASSIFICATION

8.2.2 Finding signal in classification contexts
In regression, the slope of a trend indicates the presence of signal. But what is signal in a classification
context? A fire prediction algorithm needs to predict where fires and non-fires will be. A jail bail algorithm
needs to be able to distinguish between those who are flight risks and those who are not. A political affiliation
algorithm needs to be able to place prospective voters by political party. Much of the utility of a classifier is
dependent on the qualities of its input data, in particular, its separability—or the degree to which one class
can be distinguished using values of an input variable. Through basic exploratory data analysis, separability
should be easy to spot if one knows what to look for.

When considering continuous variables, we must examine the overlap of one class’s distribution with that
of another. For example, if we are interested in determining if fires happen in larger buildings, we can plot
the kernel density of buildings that have experienced fires versus buildings without (see Figure 8.1. A case
of low separability (Graph (A)) would exhibit substantial overlap, indicating a variable has little ability to
distinguish one class from the other. Highly separable variables (Panel (B)), in contrast, would only slightly
overlap. But perhaps the neatest condition is perfect separability (Panel (C)). Because there is no overlap,
we can precisely define the phenomenon at some threshold rather than using a model to approximate it—no
model is required. Whether a family in the United States is in poverty, for example, need not be modeled
if data contain both income and number of people in household as the government has set clear criteria.
However, a model would be useful when either input variable (income or number of people) are missing.

(A) Low Separability (B) High Separability (C) Perfect Separability

Figure 8.1: Separability can be easily seen in the distributions of a continuous variable when separated
into two classes. These kernel density diagrams illustrate three scenarios: (A) Low Separability, (B) High
Separability, (C) Perfect Separability.

When inputs are discrete, separability is most visible along the diagonals of a two-way contingency table of
the target and input variable of interest. In the hypothetical in Table 8.1, we simulate a dataset containing
building violations and fires. A separable variable will distribute most observations along the diagonal of the
table: buildings that have a violation also have fires, and buildings without violations tend not to have fires.
If past building violations alone were used to predict fires, we could calculate how often predictions lined
up with actual fires. Buildings that were accurately identified as ones with fires are true positives (TP) and
buildings correctly identified without fires are true negatives (TN). Together, 82.3% of the time.

In contrast, a discrete variable exhibiting low separability will distribute observations anywhere other than
the diagonal. We can infer from Table 8.2 that whether a building has an elevator is a poor predictor of
fires, misidentifying a disproportionate number of buildings. If this factor were the only input in a prediction
model, accuracy falls to only 38%. Separability will make or break a classifier, and thorough and thoughtful
exploratory data analysis can help evaluate if the data is fit for modeling.

8.2.3 Measuring accuracy
Much like test scores in school, we generally expect accuracy to be expressed on a scale from 0% to 100%.
But in practice, a single summary statistic may hide the finer details in a model—there is not one catch-all
measure. In fact, the types of classification accuracy measures vary from one use case to another.

Measures of classification accuracy

8.2. THE BASICS OF CLASSIFIERS 143

Table 8.1: A separable discrete variable.

No Violation (F) Violation (T)
Fire (T) 10.9 22.6
No Fire (F) 59.7 6.8

Table 8.2: A non-separable discrete variable.

Elevator (F) Elevator (T)
Fire (T) 2.6 30.9
No Fire (F) 6.0 60.5

Table 8.3: Structure of confusion matrix.

Predicted (F) Predicted (T)

Actual (F) True Negative (TN) False Positive (FP)
Actual (T) False Negative (FN) True Positive (TP)

Is the classifier accurate? How many records can we predict? What are the trade-offs? The objective that
underlies these questions is more prediction-oriented, in pursuit of raw accuracy. Virtually all measures of
classification accuracy measures are derived by first converting a model’s outputs into predicted classes by
setting a classification threshold c—a cutoff along the predicted probabilities that separates what the model
believes to be positive from negative. The predicted and actual class labels can then be compared in a
confusion matrix—a n × n table that compares actual classes as rows and predicted classes as columns. A
two-class problem, for example, yields a 2 × 2 confusion matrix as seen in Table 8.3.

Each cell embodies different classification accuracy concepts. Ideally, the majority of predictions will be
true positives or TP (a positive case was accurately predicted) and true negatives or TN (a negative case
was correctly predicted). Their inverses—error—are also just as important. A false positive (FP), or Type
I error, is a negative case misclassified as a positive. In applications, false positives are also referred to as
false alarms, and fire departments are all too-well acquainted with fire alarms that did not involve a fire.
There is some cost associated with actioning on FPs, but arguably the more damaging case is that of the
false negative (FN), or Type II error. FNs occur when a negative prediction is actually a positive case. More
colloquially, this can be viewed as being blind-sided as the model (and analyst) failed to foresee a problem.

When combined in creative ways, these four measures describe the quality of a classifier, which in turn
should inform policies how algorithms are deployed. Let’s take the example of the issuance of winter weather
warnings given an incoming storm system. School districts may prefer to be over-warned as they are concerned
for the safety of their pupils. Over-warning is an explicit preference for more TPs and a higher tolerance for
FNs—people would rather be safe than sorry. The idea of over-warning is a matter of balancing between
True Positive Rate (TPR) and True Negative Rate (TNR). TPR, also known as sensitivity or recall, is the
proportion of actual storms that were predicted correctly:

TPR = TP

TP + FN
= TP

P

While the TNR, also known as specificity, is the proportion of storm-free days that were correctly predicted.

TNR = TN

TN + FP
= TN

N

The weatherman could in theory predict all storms perfectly (TPR = 1.0) but not predict any sunny days
(TNR = 0)—clearly not a practical solution. But as we adjust the classification threshold to increase TPR

144 CHAPTER 8. FRAMING CLASSIFICATION

(sensitivity), we will likely see more false positives which in turn reduces the TNR (specificity). Together,
sensitivity and specificity are trade-offs.

An alternative pair of measures uses precision and recall (sensitivity). Precision, also Positive Predictive
Value (PPV), is given as the proportion of predicted storms that are in fact storms:

PPV = TP

TP + FP

When combined with recall, we can evaluate if a model returns relevant results. The weatherman may be
more likely to issue more warnings to push up the sensitivity rate and accept a lower PPV (Table 8.4).

Table 8.4: A selection of classifier accuracy metrics derived from a confusion matrix.

Measure Formula Significance

True Positive Rate
(TPR), Sensitivity,
or Recall

TPR = T P
T P+F N What proportion positive cases are cor-

rectly identified?

True Negative Rate
(TNR) or Speci-
ficity

TNR = T N
T N+F P What proportion negative cases are cor-

rectly identified?

False Positive Rate
(FPR)

FPR = F P
F P+T N What proportion of negative cases are

incorrectly predicted as positive? Also
known as Type I error rate.

False Negative
Rate (FNR)

FNR = F N
T P+F N Proportion of positive cases that are

incorrectly predicted negative. Also
known as the false alarm rate or Type II
error rate.

Positive Predictive
Value (PPV) or
Precision

PPV = T P
T P+F P The proportion of predicted positives will

actually be positive? This measure is
influenced by the prevalence of the out-
come.

Despite the underlying accuracy trade-offs, there is often a need to communicate overall accuracy. The F1-
score, for example, provides a snapshot of accuracy at a specified threshold by calculating the harmonic mean
of precision and recall. One point to note is that the threshold needs to be the “right” one. If all predicted
probabilities are less than the threshold, the F1-score simply indicates that none of the values exceeded c.

A more robust measure of accuracy is the Area Under the Curve (AUC, sometimes referred to as the con-
cordance statistic C-statistic) that is derived from a Receiving-Operating Characteristic (ROC) Curve. A
product of signal detection research during the Second World war, the ROC curve calculates pairs of TPR
and FPR at varying classification thresholds c, plotting each pair of values. The area under the resulting
curve is a measure of how the classifier performs on average under a wide range of scenarios (Table 8.5).

8.2. THE BASICS OF CLASSIFIERS 145

Table 8.5: Summary measures of classification accuracy.

Measure Formula Significance

Accuracy (ACC) ACC = T P+T N
n The proportion of that records are cor-

rectly classified.
F1-Score (F1) F1 = 2

1
TPR × 1

PPV

Alternative method of calculating accu-
racy using a harmonic mean. It balances
the TPR with the PPV.

AUC or Concor-
dance (C) statistic

AUC =
∫ 1
0 ROC(u)du The AUC is the area under the ROC

Curve. The ROC is derived by plotting
values of TPR (Sensitivity) and FPR for
varying probability cutoffs c.

Keep in mind that any measure of accuracy can be distorted by class imbalance, when a minority class—a
class with fewer observations—is far less prevalent than other classes. We can imagine that many potential
class variables are imbalanced:

• fire-related fatalities account for only 3,400 fire deaths in 2017 (U.S. Fire Administration (2017)) vs. 2.7
million total deaths in the US in 2016 (Centers for Disease Control (2017))

• approximately 0.17-percent of the US population is homeless (BBC (2017)).
• 8.7% of US population was uninsured in 2017 (U.S. Census Bureau (2017b)).

Class imbalance can arise from any number of sources, whether the minority class is a small part of a
population or the sample is biased. Without addressing the class imbalance, summary measures of accuracy
can be overstated. Fires, for example, tend to fall into this category as most buildings are not constantly on
fire on most days. If 99% of a sample did not experience a fire, then an AUC of 99% may simply indicate a
model has learned to patterns associated with fire-free days and has little ability to identify fire risks. Taking
a closer look at TPR, TNR, among other measures can paint a truer picture.

Alternatively, a measure like the F1-score may understate its accuracy if the classification threshold is set too
high or at the default of c = 0.5. The optimal threshold may actually be far below or above 0.5 (see Figure
8.2). Shifting the threshold can improve accuracy, but if adjusted in-sample, we may overstate a classifier’s
accuracy. Diagnosing a model’s accuracy requires clarity of purpose.

(A) Correct boundary (B) Biased boundary

Figure 8.2: Thresholds dictate the placement of decision boundaries, which in turn influence the classification
error.

146 CHAPTER 8. FRAMING CLASSIFICATION

Information criteria
Data scientists tends to focus on accuracy derived from a confusion matrix as the goal is often to predict
an absolutely accurate model—in pursuit of the true model. In actuality, we do not know what is the true
model, but we know that too few variables lead to models with possible bias, whereas too many variables
may increase the noise of predictions. A truer model exists somewhere in between those two extremes. This
idea can be framed in terms of information loss. Farther away from the true model, less a model represents
the “true” process, therefore more information is lost. This is the basic idea that underlies Information
Criteria such as the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).
Both measures were developed to help approximate the relative information lost, which in turn facilitates
model selection. The AIC, as developed in Akaike (1973), rates models for how well they approximate the
true model, taking the maximized log-likelihood log(l̂) that is commonly available in regression models2,
penalized by the number of parameters k.

AIC = 2k − 2log(l̂)

The BIC, as developed in Schwarz (1978), extends the penalty to include the sample size n. BIC has an
added quality that it can identify the true model from among alternatives. If the true model is present, it
has been argued that the probability of choosing the right model approaches 1. Then again, the challenge is
that true is not known—it is theoretical.

BIC = log(n)k − 2log(l̂)

To find the best model relative to alternatives, the analytical goal is to find the model that minimizes the
information criterion. For the most part, AIC and BIC tend to agree on which model is best, but occasionally
there are differences. In particular, AIC has a tendency of choosing larger, more complex models, while BIC
tends toward more parsimonious specifications. Nonetheless, research studies will rely on these measures to
illustrate that the optimal model was not selected arbitrarily from a set of alternatives.

Despite their wide use in the social sciences, these measures have limited applicability outside of regression
contexts.3 Furthermore, information criteria are relative measure—they do not provide the sort of closure
and confidence of an absolute accuracy measures.

8.3 Logistic regression
8.3.1 The social science workhorse
With the basic ideas behind classification laid out, we can now appreciate a classic technique. Logistic
regression, or binomial generalized linear models (GLM), is the go-to classifier for any field concerned with
causal inference. Like its cousin OLS, it can parse out how each input variable influences the target variable.
Thus, the technique can be helpful in both the pursuit of interpretability (focus on β̂) and prediction (focus
on ŷ). A policy analyst can rely on logistic regression to distill the marginal effects of certain variables on
social outcomes, while a political advertisement targeting analyst can use the same framework to maximize
predictive accuracy. FireCast also made use of logistic regression in its early versions so that buildings could
be risk-rated while crafting the narrative to brief firefighters.

The basic gist of the method is as follows: Let’s assume the classes of binary target y can be modeled using
a linear combination of input variables x1 and x2. By setting a classification threshold along the predicted
probabilities, we can draw a linear decision boundary that separates one class from the other. Similar to
OLS, we can express the modeled relationship between y, x1, x2, and any other covariate as a linear model:

ŷi = β0 +
K∑

k=1
βkxik

2We will discuss log-likelihood in-depth later in this chapter.
3As we will see in the next chapter, methods such as decision trees and Random Forests do not have a set number of

parameters k.

8.3. LOGISTIC REGRESSION 147

where ŷi is a prediction of a binary outcome and βk are coefficients in the social science literature, or otherwise
weights wk in the computer science literature. The problem with binary outcomes in a linear framework is
that ŷ can exceed the bounds of 0 and 1—the output would make little sense. Imagine if the predicted ŷ were
-103 or +4. The magnitude would not have any obvious meaning, so how should one interpret the result?
Fortunately, statisticians have cleverly solved the bounding problem by inserting the model output ŷi into a
logistic function:

p(yi = 1) = 1
1 + e−ŷi

thereby bounding the values to a range between 0 and 1 in the shape of a sigmoid or “S-Curve”.

8.3.2 Telling the story from coefficients
Despite being buried within the logistic function, each coefficient is interpretable. The equation first requires
some mathematical tidying. While derivations are generally beyond the scope of this text, understanding
these transformations instills intuition for the practical use of logistic regression coefficients. We start by
associating the logarithm transformed odds (or log odds) of an event with the linear portion of the logistic
regression:

log(odds) = log(p(y = 1)
p(y = 0)) = β0 +

K∑

k=1
βkxk

where the odds are simply the probability of an event divided by no event. To isolate the odds on the
left-hand side, we exponentiate both sides of the equation:

odds = p(y = 1)
p(y = 0) = eβ0+

∑K

k=1
βkxk = eŷi

Lastly, we can contextualize odds using an odds ratio (OR) in which we compare the odds of an one-unit
increase in a variable xk to a zero-unit change:

Odds Ratio (OR) = odds(xk + 1)
odds(xk + 0) = eŷi(xk+1)

eŷi(xk+0)

If we recall the quotient rule for exponents, a nifty mathematical identity usually taught in high school, the
right-hand side of the equation can be vastly simplified: simply exponentiating the coefficient of interest βk

allows us to interpret the multiplicative effect associated with a one-unit increase in the xk:

OR = eβk

Let’s put the odds ratio into context. If a logistic regression were trained to associate health insurance
coverage with wages ($000) and citizenship (binary), the regression formula may be as follows:

y(uninsured) = 0.468 − 0.048 × wage + 0.372 × vnon-citizen

The raw coefficients have little meaning, but a positive value signals that the variable is associated with a
higher chance of being uninsured. While not shown, it is also worth noting that each coefficient has a standard
error estimate that indicates its statistical significance. By exponentiating the coefficients, we see that a $1000
increase in wages is associated with a 4.69% lower chance of being uninsured (1−e−0.048 = 1−0.953 = 0.0469).
Otherwise stated, the higher one’s earnings are, the better the chance of having coverage. The non-citizen
coefficient (e0.372 = 0.451) translates to a 45% higher chance of being uninsured.

A logistic model’s transparency allows an analyst to tell the story behind the science. Because of this prized
quality, it has been adopted in a many fields. A 2012 health study using one of the largest lung cancer

148 CHAPTER 8. FRAMING CLASSIFICATION

datasets assembled, for example, was able to link intensity of smoking behavior to specific types of cancer.
In addition to quantifying the odds ratios for specific lung cancer types, they found that a smoker’s risk of
cancer never falls to non-smoker baselines even after quitting for 35 years (Pesch et al. (2012)). In a study in
Geomorphology, logistic regression played a role in understanding landslide susceptibility in Central Japan,
which has implications for civil and geotechnical engineering. Researchers examined 87 landslide events with
GIS data containing over a million 10 × 10 meter resolution grids. By estimating a logistic regression to
predict whether each grid cell had experienced a landslide, the model coefficients indicated that areas that
are closer to road networks and have steeper slope gradients were at greater risk of landslides. The model was
able to achieve a decent level of accuracy (AUC = 0.8358) and was applied to produce a risk map (Ayalew
and Yamagishi (2005)).

8.3.3 How are coefficients learned?
The secret sauce behind the coefficients is a process known as Maximum Likelihood Estimation or MLE.
While the derivation of the method is beyond the scope of this text, having a high-level understanding of the
role of this procedure is essential for using logistic regression, but also for appreciating more sophisticated
techniques such as regularized regression (later this chapter). The gist of MLE is as follows: coefficients are
incrementally adjusted in order to maximize the likelihood that they represent the process the generated the
training data. We rely on a cost function known as the log-likelihood (l(β)), sometimes referred to as log loss
or multi-class cross entropy in data and computer science:

l(β) =
n∑

i=1
log pg

where pg = pr(yi = g|X; β), or the probability of class g given the values of the inputs xk and coefficients
β. The formula is the cost function for multiple classes. For logistic regression, we are interested in a two-
class scenario. We can expand the log-likelihood function into a mathematically convenient form where the
probability of g = 1 is given as pi,g=1 and g = 0 as (1 − pi,g=1):

l(β) =
n∑

i=1
yi log(pi,g=1) + (1 − yi) log(1 − pi,g=1)

which in turn can be further simplified :

l(β) =
n∑

i=1
[yiŷi − log(1 + eŷ)]

The idea here is that as we solve for values of β, the prediction ŷ will change as well. We take the sum of
ŷi − log(1+eŷ) across all observations in order to track the model’s progress. The MLE procedure iteratively
adjusts the values of β until l(β) is maximized. For a more in-depth treatment on the topic, refer to The
Elements of Statistical Learning (Hastie, Tibshirani, and Friedman (2009)).

8.3.4 In practice
Logistic regression and MLE have standard implementations in most data analysis software making it widely
accessible. It is not uncommon to see program evaluators rely on logistic regression to decompose causal
effects. Data scientists also use logistic regression for targeting and prioritization, focusing on accuracy
and balance of predictions. In both cases, there are divergent technical standards for how to successfully
implement a model. Here, we draw a distinction between interpretability and predictability and describe
common challenges that analysts encounter.

Interpretability. Logistic regression coefficients lend themselves to articulating how X → Y , thereby
facilitating causal inference. For the inference to be valid, the coefficients must follow basic assumptions.

8.3. LOGISTIC REGRESSION 149

For one thing, how does one choose the best model? In logistic regression, it is wholly dependent on which
variables are included. It is customary to test multiple specifications, then compare how each performs in
terms of the AIC and BIC, choosing the model with the lowest score.

Arguably, the most powerful quality of logistic regression is the interpretation of the coefficients. They
can, however, be distorted by multicollinearity—a condition in which two or more input variables are not
only correlated with the target variable but also among themselves. MLE then finds it challenging to parse
the average effect of xk on y, holding all else constant. Thus, if two or more variables have identical or
similar information, the algorithm is not able to definitively distill each variable’s effects during MLE. The
consequence is quite serious (statistically, that is): coefficients will behave oddly, sometimes with abnormally
large magnitudes and sometimes exhibiting the wrong direction of effect (e.g., positive effect when a negative
is expected). One approach to diagnose this condition involves calculating Variance Inflation Factors (VIF).
Given a specification:

Y (employed) = β0 + β1education + β2age + ... + βkxk + ε

VIF is a calculated using a two-step process. First, each input variable xk on all other variables, recording
the R-squared R2

k. The idea is to summarize the correlation between each xk and all other covariates. Second,
the VIF is calculated as

V IFk = 1
1 − R2

k

A variable xk with V IF = 1 is orthogonal or uncorrelated with other input variables, while a V IF > 1
indicates some correlation. While there is not a standard cutoff for multicollinearity, it is reasonable to
assume that cases where V IF > 5 merits more attention.

How can we mitigate the collinearity? For groups of collinear variables, one approach is to select one factor
that best represents that group. This places a large degree of faith in the person’s ability to identify the right
signal There are more computationally intensive dimensionality reduction techniques that distill the common
signal from a set of variables. Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)
transform k-number of variables into a concise set of uncorrelated component variables, each of which captures
unique motifs in the data. The drawback, however, is that each component is a mix of variables, making it
subject to one’s judgment to define the “theme” of the component.

Prediction. Multicollinearity does not usually adversely impact predictions ŷi, so as long as the relationship
among collinear variables are stable. The real challenge lies in how ŷi will be used in application. One
dichotomy consists of ranking versus labeling. Ranking problems make use of the predicted probabilities
to sort records, whether to make recommendations (e.g., online recommender systems for products and
services) or to prioritize attention (e.g., fire safety inspections). If the use case depends solely on the order
of probabilities, then model development is a matter of identifying the specifications that provide the best
out-of-sample accuracy.

Labeling problems, in contrast, convert predicted probabilities into predicted classes, requiring attention paid
to the sample balance or classification threshold. In a highly imbalanced sample, the predicted probabilities
ŷ will center around the average probability that an event will occur. This implies that an unadjusted
classification threshold c or unaddressed class imbalance will result in poor predictions. There are multiple
solutions to the problem, each of which has drawbacks.

• Adjusted cutoff : The classification threshold c can be adjusted to optimize accuracy. Setting the thresh-
old to the average probability can achieve a better balance between TPR and TNR, but needs to be
done on a cross-validated sample to reduce the incidence of overfitting.

• Over-sampling: Over-sampling involves replicating the minority class observations to an equal propor-
tion of the majority class. The inverse is also done: under-sampling the majority class so that it is of
equal proportion to the minority. In either case, replicating observations does not change the amount
of unique information in the data, but it is a mechanical solution to tricks the classifier into producing

150 CHAPTER 8. FRAMING CLASSIFICATION

predictions that center around c = 0.5. These strategies run the risk of overfitting models. Furthermore,
the probabilities no longer reflect reality, but rather the artificially adjusted sample.

• Synthetic Over-Sampling: Alternatively, Synthetic Minority Over-Sampling Technique (SMOTE) sim-
ulates new observations that look like the minority class that add fresh signal to the sample while
minimizing overfitting (Chawla et al. (2002))—see the DMwR package.

Ultimately, these sampling challenges require some degree of trial and error to get right.

Hybrid Cases. Data are often collected for a specific purpose, but are re-purposed to support evaluation
of programs and policies. The problem, however, is that the data are not collected under experimental
conditions. The absence of randomly assigned treatment and control groups means results can be biased—
we may be comparing apples to oranges. As there is so much data and random control trials are expensive,
methods like Propensity Score Matching (PSM) have been developed. Originally introduced in Rosenbaum
and Rubin (1983), PSM brings together prediction and inference in order to re-balance a sample, aiming
to force both the treatment group and the control group to be statistically indistinguishable from one
another based on observable characteristics. The procedure facilitates an apples to apples comparison. If
sufficiently well balanced, any difference in a variable of interest can be attributed to the treatment. This
procedure is accomplished by applying a logistic regression to predict assignment (e.g., treatment versus
control) using select observable characteristics. The resulting probabilities, or propensity scores, are matched
between treatment and control groups and tested for any statistical differences.

Since its inception, PSM has been adopted in public health, medicine, and economics, among other fields.
For example, Jalan and Ravallion (2003) study the effect of Trabajar, a “workfare” program in Argentina,
on income gains. In particular, the authors quantify the effect of participating in the program and which
parts of the income distribution benefit the most. The challenge as in any PSM is the lack of a counterfac-
tual—often times social programs will capture data on participants but miss non-participants. Without the
counterfactual, it is not possible to infer program effects. By pooling both the program’s data with a large
national socioeconomic survey, the authors then have an imbalanced sample on which PSM can be applied
to produce a balanced sample. Post-matching results suggest that income gains are approximately 50% of
the pre-intervention gross wage and that 80% of program beneficiaries are in the bottom 20%.

Non-Starters. Logistic regression cannot be estimated when the number of parameters k outnumbers the
sample size n. When faced with ill-posed problems such that k > n, it is up to the analyst to choose which
variables enter the equation. In policy and strategy environments, there may be a political agenda that could
guide the selection of conceptually relevant variables, though it should be emphasized that simply including
a variable in a model does not make it “true”. Furthermore, each person’s life experiences are different, thus
we run the risk of introducing an implicit bias when selecting variables. In a high-dimensional problem,
manual testing and selection of variables will be prone to bias. As we will see later this chapter, there are
more efficient and scalable methods to overcome these big data obstacles (Table 8.6).

Table 8.6: Pros and cons of logistic regression.

Pros Cons
Interpretable in terms of odds ratios. Collinear input variables may cause coefficients to

return odd, inexplicable results.
Probabilistic properties allow for hypothesis
testing that help build statistically-rooted
arguments.

Unable to handle cases where k > n

Problems where the distinction between classes
is linear

When k is large, finding optimal specification is
challenging.
Class imbalance makes prediction a non-trivial task.

8.3.5 DIY: Expanding health care coverage
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example

https://github.com/DataScienceForPublicPolicy/diys

8.3. LOGISTIC REGRESSION 151

is labeled diy-ch08-glm.Rmd.

In this DIY, we explore how logistic regression can help describe trends in health care coverage in the United
States while supporting a predictive targeting campaign to reach uninsured individuals.

Background. Universal healthcare has become a basic human right in many countries. In the United
States, this is not currently a guarantee, shrouded in heated political debate and controversy. Regardless
of the politics, there is a lot of useful data on healthcare coverage. According to the American Community
Survey (ACS), an annual survey of approximately 3.5% of the US population as conducted by the US Census
Bureau, over 22.4% of residents of the U.S. state of Georgia were without healthcare coverage in 2009. That
is a fairly sizable proportion of the population—for every ten people, two to three did not have coverage.
To close the gap in 2010, a new law was signed into effect to provide affordable healthcare to the uninsured
(Stolberg and Pear (2003)).

Imagine that you have been tasked with getting the word out about the new program in the state of Georgia.
There is a hiccup, however. While commercial marketing databases are common, there are not many sources
of information that indicate whether one has health care. The arguably best data on coverage are survey-
based. Thus, we do not know who is and is not insured. A brute force marketing campaign could reach out to
all Georgians though it can easily be seen as a wasted effort as three-quarters of the population are already
covered. How do we reach the remaining quarter of the population that is not already insured? For marketers
and public policy practitioners, this is a classic targeting problem.

Setting up a solution. We operationalize our solution by estimating a logistic regression. Given the label
y(Coverage), we can use logistic regression to not only infer which demographics are associated with coverage
but also train a model to prioritize who should be contacted about receiving coverage:

Y (No Coverage) = f(Sex, Age, Education, Marital Status, Race, Citizenship)

The glm function makes it easy to estimate logistic regression in addition to other linear models including
ordinary least squares for continuous outcomes, logistic regression for binary outcomes and Poisson regression
for count outcomes. At a minimum, three parameters are required:

glm(formula, data, family)

where:

• formula is a formula object. For example y = β0 + β1x1 + β2x2 + ε can be represented as
y ~ x1 + x2.

• data is a data frame containing the target and inputs.
• family indicates the probability distribution used in the model. Distributions typically used

for GLMs are binomial (binary outcomes), poisson (count outcomes), gaussian (continuous
outcomes - same as OLS), among others.

We use the U.S. Census Bureau’s ACS sample for Georgia to train the logistic regression. ACS samples are
thoroughly designed survey samples that have sampling weights indicating how many people each response
represents. For simplicity, we have curated a sample with pertinent variables, but ignore the sampling weights.
Below, we load the pre-processed dataset.

https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_pums_csv_2009&prodType=document

152 CHAPTER 8. FRAMING CLASSIFICATION

load("data/acs_health.Rda")

Focusing on interpretation. In public policy, the focus of regression modeling is typically on identifying an
effect or an associated relationship that describes the process being studied. To isolate the effects from each
variable of interest, analyses involve a buildup, which are a series of models that show how sets of conceptually
related variables contribute to the phenomenon in question. In our analysis below, we show a build up of four
models: personal characteristics (race, age, and sex), economic factors (wage, education, employment), social
factors (citizenship, marital status), and “fully loaded” (all factors). The inclusion of certain characteristics,
such as race and sex, are arguably necessary for informing models the health care. Demographic variables
may capture latent, unobserved characteristics that in turn can improve the predictability of the coverage
variable, but it is advisable to review if the inclusion of these characteristics are equitable and ethical.

glm_pers <- glm("no.coverage ~ log(age) + race + sex",
data = health, family = binomial)

glm_econ <- glm("no.coverage ~ wage + esr + schl",
data = health, family = binomial)

glm_soc <- glm("no.coverage ~ cit + mar ",
data = health, family = binomial)

glm_full <- glm("no.coverage ~ log(age) + wage + schl + esr + cit + mar + race + sex",
data = health, family = binomial)

Each glm call returns a regression object that concisely summarizes the inner workings of a logistic regres-
sion model. These results are summarized in Table 8.7. Let’s start with identifying which variable groups
contribute the most to model fit as inferred with the AIC values at the bottom of the regression table. The
specification with the lowest AIC indicates that the model that best captures the process being modeled. The
fully specified model explains the health care story the best; However, the economic specification carries the
most explanatory power among any one variable group. It is particularly interesting that the combination
of economic, social, and personal factors yield a model that performs far better than any single part.

The body of the regression table shows the relationships (e.g., positive or negative coefficients) and their
statistical significance (e.g., standard errors in parentheses). Other than race, all variables are statistically
significant at the 1% level, albeit some more than others. For example, education has a large effect on the
combined model. Of the four levels in education, all coefficients are interpreted relative to the graduate
degree reference group. People who did not finish high school and a high school graduate have a 3.7-times
(e1.3 = 3.7) and 3.3-times (e1.2 = 3.3) higher chance of being uninsured, respectively. In contrast, a college
graduate is relatively better off than the previous two groups with a 1.7-times higher chance of being
uninsured (ew=0.5 = 1.7).

These effects seem to be reasonable. For additional surety, we screen for multicollinearity in the full specifi-
cation by calculating the VIFs making use of the vif function in the car package. Fortunately, all values are
close to V IF = 1 (see Table 8.8) suggesting that there is not likely that collinearity has an undue influence
on our estimates.
Load package
pacman::p_load(car)

VIF function
vif(glm_full)

Focus on prediction. Let’s now approach classifiers from the lens of conducting a micro-targeting campaign
to get the word out about new insurance options. Using logistic regression, we can train a model to produce

8.3. LOGISTIC REGRESSION 153

Table 8.7: Logistic regression coefficient table for four alternative specifications.

Dependent variable:
No Health Care Coverage

Personal Economic Social Full
(1) (2) (3) (4)

log(Age) −1.2∗∗∗ (0.02) −0.7∗∗∗ (0.03)
Race: Asian −0.2 (0.2) −0.2 (0.2)
Race: Black −0.1 (0.2) −0.01 (0.2)
Race: Native Hawaiian/Pac. Islander −0.9∗ (0.5) −0.6 (0.5)
Race: Other 1.4∗∗∗ (0.2) 0.7∗∗∗ (0.2)
Race: Two or More −0.4∗∗ (0.2) −0.3 (0.2)
Race: White −0.6∗∗∗ (0.2) −0.3 (0.2)
Sex: Male 0.3∗∗∗ (0.02) 0.4∗∗∗ (0.02)
Wage −0.03∗∗∗ (0.001) −0.02∗∗∗ (0.001)
Employ: Civilian 2.9∗∗∗ (0.4) 3.3∗∗∗ (0.4)
Employ: Not in Labor Force 2.0∗∗∗ (0.4) 2.8∗∗∗ (0.4)
Employ: Unemployed 3.8∗∗∗ (0.4) 4.2∗∗∗ (0.4)
Education: HS Degree 1.3∗∗∗ (0.1) 1.2∗∗∗ (0.1)
Education: Less than HS 1.8∗∗∗ (0.1) 1.3∗∗∗ (0.1)
Education: At least BA 0.5∗∗∗ (0.1) 0.5∗∗∗ (0.1)
Citizen: No 2.0∗∗∗ (0.03) 1.8∗∗∗ (0.04)
Married: Yes −1.1∗∗∗ (0.03) −1.0∗∗∗ (0.03)
Married: Never 0.3∗∗∗ (0.03) −0.5∗∗∗ (0.04)
Married: Separated 0.3∗∗∗ (0.1) −0.01 (0.1)
Married: Widowed −1.6∗∗∗ (0.1) −1.4∗∗∗ (0.1)
Constant 3.2∗∗∗ (0.2) −5.0∗∗∗ (0.4) −1.2∗∗∗ (0.03) −2.3∗∗∗ (0.4)
Observations 74,805 74,805 74,805 74,805
Log Likelihood −32,711.6 −31,587.3 −31,840.1 −28,380.2
Akaike Inf. Crit. 65,441.2 63,190.7 63,692.2 56,802.4

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8.8: Generalized Variance Inflation Factors for Full Specification.

Variable GVIF Degrees of Freedom Adjusted GVIF

log(age) 1.96 1 1.40
Wage 1.62 1 1.27
Education 1.24 3 1.04
Employment 1.61 3 1.08
Citizenship 1.27 1 1.13
Marital Status 2.20 4 1.10
Race 1.34 6 1.02
Sex 1.04 1 1.02

154 CHAPTER 8. FRAMING CLASSIFICATION

probabilities of being uninsured. The trained model could then be applied at scale to a commercial database
of consumers that contains the same variables. As marketing databases are proprietary and quite expensive,
we simulate the process by splitting our health sample into a training set of 70% of observations to build
our model and the remaining 30% as a test set.
Set seed for replicability, then randomly assign
set.seed(321)
rand <- runif(nrow(health)) > 0.7

Create train test sets
train <- health[rand== T,]
test<- health[rand== F,]

Different practices apply when gaging the accuracy of predictive models. Data scientists often are weary of
measuring accuracy in-sample as it will only overstate predictive performance. Instead, we can partition the
training sample into k-number of randomly selected partitions. For each partition k, we train a model on
k − 1 partitions, then score partition k taking note of its predicted accuracy. We then cycle through each k
until each partition is predicted once. Then, the accuracy measures across all k partitions are averaged to
summarize performance. This k-folds cross-validation strategy is a standard procedure for validating model
performance. It sounds like an arduous programming task, but fortunately, the cv.glm function in the boot
library makes validation process quite seamless:

cv.glm(data, fit, cost, K)

where:

• data is a data frame or matrix.
• fit is a glm model object.
• cost specifies the cost function for cross validation.
• K is the number of cross validation partitions.

Note that the cost function needs to be specified by the user. To supply a custom cost function, two vectors
need to be specified: The observed responses and the predicted probabilities. For example, we can wrap a
function around the ROCR package to obtain the AUC metric.
costAccuracy <- function(y, yhat){
#
Calculate AUC using ROCR package
#
Args:
y, yhat = binary target and predicted probabilities
#
Returns: AUC value

pacman::p_load(ROCR)
pred.obj <- prediction(yhat, y)
perf <- performance(pred.obj, measure = "auc")
return(unlist(perf@y.values))
}

What’s an appropriate number of partitions k? Smaller values of k reduce the number of available observa-
tions, which in turn affords fewer opportunities for the model to learn underlying patterns. The result will
be noisier predictions that lead to more volatile estimates of accuracy and a lessened ability to distinguish a
well-behaved model from one a poor one. In cases where sub-populations in the sample are small (e.g., some
demographics tend to be quite small), the entirety of the sub-sample fits into one partition and causes the
model to “crash”. Choosing a higher value of k, in contrast, will mitigate challenges with sample loss, but
requires more time to train k models. This is lengthened when we consider that k-folds cross-validation would
need to be performed on all alternative models so that we are sure the selected model is in fact the best. We
recommend at least tenfold cross-validation, but the value of k should be sufficiently large to lend confidence

8.3. LOGISTIC REGRESSION 155

to the choice of best model.

We test each specification using tenfold cross-validation and obtain the average AUCs. The cross-validated
accuracies, stored in the delta element of the cv.glm object, indicate that each group of variables have
comparable contributions to accuracy. When combined, the fully loaded specification performs the best,
achieving AUC = 0.81—a decent result. Furthermore, the relative model performance confirms the AIC
results.
Load boot library
pacman::p_load(boot)

Train models
glm_pers <- glm("no.coverage ~ log(age) + race + sex", data = train, family = binomial)
glm_econ <- glm("no.coverage ~ wage + esr + schl", data = train, family =binomial)
glm_soc <- glm("no.coverage ~ cit + mar ", data = train, family = binomial)
glm_full <- glm("no.coverage ~ log(age) + wage + schl + esr + cit + mar + race + sex",

data = train, family = binomial)

Calculate k-folds
pers <- cv.glm(data = train, glmfit = glm_pers, cost = costAccuracy, K = 10)
econ <- cv.glm(data = train, glmfit = glm_econ, cost =costAccuracy, K = 10)
soc <- cv.glm(data = train, glmfit = glm_soc, cost = costAccuracy, K = 10)
all <- cv.glm(data = train, glmfit = glm_full, cost = costAccuracy, K = 10)

Scoring. We can now apply the fully loaded specification to the test set—our simulated real world targeting
list—to guide micro-targeting efforts. This is accomplished using the predict function, which requires a glm
model object and a dataset (newdata) to score observations.

predict(object, newdata, response)

where:

• object is a GLM model object.
• newdata is a data frame. This can be the training dataset or the test set with the same

format and variables as the training set.
• response indicates the type of value to be returned, whether it is the untransformed “link”

or the probability “response”.

As a sanity check, we compute the AUCs for each train and test samples, revealing comparable performance
of 81.2 % versus 80.9 %). Generally, we should expect to see that test accuracy is lower than train accuracy.
A small to negligible difference in accuracy between the training and test indicates the model only slightly
overfits, whereas a large difference should merit more attention.
Predict
yhat_train <- predict(glm_full, train, type = "response")
yhat_test <- predict(glm_full, test, type = "response")

Obtain AUCs
auc_train <- costAccuracy(train$no.coverage, yhat_train)
auc_test <- costAccuracy(test$no.coverage, yhat_test)

Measures for deployment. Model accuracy is one thing, but whether a classifier that is fit for purpose
requires other measures. In the case of prioritization, we should ask what is the expected hit rate for cases
rated at pr > 50%? and how many uninsured people can we reach the top-ranked 1000 people?. The answer to
these questions can help with operational planning (e.g., how many people to staff) and cost-benefit analysis
(e.g., can we reach enough people for the effort to be worth it?).

Let’s calculate the estimated hit rate by first dividing the test sample into at intervals of 5% of the predicted
probabilities yhat_test. Within each interval, we estimate the hit rate of uninsured Georgians along with

156 CHAPTER 8. FRAMING CLASSIFICATION

the number of people. As one would expect, higher probabilities are associated with higher hit rates, but the
number of people who have high scores are a relatively small proportion. Much like FireCast, as we move
from high to low scores, we increasingly will encounter those who are already insured which in turn reduces
the hit rate.
Load
pacman::p_load(dplyr)

Bin the test probabilities to nearest 5%
test$score_bucket <- round(yhat_test / 0.05) * 0.05

Calculate hit rates
rates <- test %>%

group_by(score_bucket) %>%
summarise(hit.rate = 100*round(mean(no.coverage),2),

cell.n = n(),
cell.target = sum(no.coverage))

If the outreach campaign focused on scores equal to and greater than 50%, we would target a group of
n = 3406 people (6.5% of the sample)—approximately 63% of which are uninsured. Alternatively, if the top
1000 people were targeted, the hit rate would be 74.5%—markedly higher rates but a small number of people
would be reached. In either case, we can maximize targeting resources by targeting highly probable cases
recognizing that there is a diminishing return (Figure 8.3).

0

25

50

75

0.00 0.25 0.50 0.75
Predicted Probability

Pe
rc

en
t U

ni
ns

ur
ed

(A) Hit rate

0

3000

6000

9000

12000

0.00 0.25 0.50 0.75
Predicted Probability

N
um

be
r o

f P
eo

pl
e

(B) Number of people per bin

Figure 8.3: The expected hit rate based on the test sample predictions: the percent hit rate (Panel A) and
the number of people (Panel B) given the predicted probability of being uninsured.

8.4 Regularized regression
Modeling problems should ideally fit the criteria of a well-posed problem. Originally described in Hadamard
(1902), a well-posed problem meets three criteria:

• There is a solution.
• There is a unique solution.
• The solution depends continuously on the parameters or input data.

8.4. REGULARIZED REGRESSION 157

While it would seem that many data projects meet these criteria, there are challenges that arise with modern
data. A problem that does not meet one or more of the criteria is considered an ill-posed problem. How could
these problems manifest themselves in data?

Let’s suppose a data scientist is tasked with identifying the drivers of health care insurance coverage. Her
sample contains k = 1000 and n = 500. Conventional methods like logistic regression methods are ineffective
for this effort—there is not a feasible solution when k > n. The typical workaround in policy environments is
to approach the modeling problem from a normative perspective, using only variables that are conceptually
relevant. After some trial and error, a data scientist could choose a three-variable specification that not only
provides a feasible solution but lends itself to a crisp, compelling narrative. While these results could be
promising, it is less so when put into perspective: The chosen specification is just one of 166 million possible
three-variable specifications. In other words, simplifying a high-dimensional problem can lead to inaccurate
or suboptimal results.

Imagine another case in which an analyst has a near limitless amount of degrees of freedom at his disposal.
He finds that adding more variables to a model improves the fit. This, of course, comes with the increased
risk of overfitting the model due to added complexity. When applied out-of-sample, individual predictions
behave erratically, especially to small changes in the input variables. In other words, the plethora of variables
allows a model to appear better than it actual is.

Both scenarios are examples of ill-posed problems that are common in information-rich environments. To
overcome these challenges, we need to consider novel modeling techniques.

The regularization option. The creator of Saturday Night Live Lorne Michaels once said “To me, there’s
no creativity without boundaries”. For SNL writers, they are given less than a week to write jokes and
scripts, prep comedians and actors, hold rehearsals, and put on a professional performance. In this con-
text, the showrunners, cast, writers, and crew can only converge on an idea when given the constraints
(e.g., compressed time frame, limited budget).

This idea also relates to ill-posed problems as well. When a logistic regression (and any linear regression
for that matter) is overly complex or has too many dimensions, a logistic regression cannot convert on a
stable solution. We can introduce a constraint through regularization—a broad range of techniques that
operationalize ill-posed problems. In this case, placing a penalty on the log-likelihood function will do the
trick. This simple change to the log-likelihood function reduces the number of possible feasible regression
solutions by forcing coefficients of noisier less correlated variables toward zero. In short, regularization has
the effect of shrinking some coefficients toward and sometimes exactly zero, but how close to zero depends
on the size and type of penalty.

Ridge logistic regression is a breakthrough technique developed in Hoerl and Kennard (1970). A penalty is
placed in the log-likelihood function, reducing space for feasible coefficient solutions:

l(β) =
n∑

i=1
[yiŷi − log(1 + eŷ)] − λ

K∑

k=1
|βk|2

where the tuning parameter λ (also known as the shrinkage parameter) adjusts the effect of an l2 penalty—or
the sum of squared coefficients. The additional term (λ

∑K
k=1 |βk|2) is a bias that gives the regression less

“wiggle room” to find coefficients that satisfy a stable solution. Adjusting λ directly impacts the size of
coefficients βk. Larger values of λ force the model to work with less room, forcing some coefficients toward
zero (but not precisely zero). The λ value is determined analytically, meaning that data scientists must test
a set of λ values along a grid (range of equally spaced values) through cross-validation. The λ value that
minimizes a pre-selected error function corresponds to the model with the optimal balance of coefficients
and accuracy.

Another regularized regression is Least Absolute Shrinkage and Selection Operator (LASSO). As developed
in Tibshirani (1996), LASSO regression applies an l1 penalty rather than an l2 penalty:

158 CHAPTER 8. FRAMING CLASSIFICATION

l(β) =
n∑

i=1
[yiŷi − log(1 + eŷ)] − λ

K∑

k=1
|βk|

This simple but innovative change in the penalty allows regularization to take a remarkable step forward:
LASSO can force parameters to exactly zero and act as an automated variable selection procedure. This is a
key breakthrough that safely operationalize models, sifting through an insurmountably large variable set to
find a unique subset.

While we discuss regularization in the context of logistic regression, we should emphasize that this is only one
of many cases where regularization applies. In fact, LASSO and Ridge regressions can be applied to linear
regression and survival analysis, and regularization techniques appear in many forms of machine learning
techniques that are discussed in later chapters.

8.4.1 From regularization to interpretation
Reguarlized methods are useful for variable selection in high-dimensional datasets. While the models can be
applied to predict outcomes, their coefficients cannot be directly interpreted like standard logistic regression
coefficients—they are biased due to the penalty within the cost function. Furthermore, the methods do
not produce standard errors, making it a challenge to articulate statistical significance. In the worst-case
scenario, regularized regression can incorrectly shrink conceptually relevant variables to zero while retaining
conceptually irrelevant variables.

Belloni, Chernozhukov, and Wei (2016) developed a strategy to overcome some of these barriers and make use
of LASSO’s variable selection properties in the pursuit of inference. As implemented in the hdm package, the
Double LASSO selection procedure conducts variable selection from a large set of potential control variables
yet produces an unbiased estimate of a variable in interest. The process unfolds in three steps.

First, a LASSO regression is fit on a set of covariates while omitting a focal variable xi. Take note of the
variables that have non-zero coefficients where λ is optimized.

yi = f(wi1, wi2, ..., wik)

A second stage model fits LASSO on the focal variable xik. Again, we take note of non-zero coefficients.
Note that there should not be any additional variables selected if the xik is truly randomized. The non-zero
coefficients from the first and second LASSO models are added to a set of controlling variables A.

xi = f(wi1, wi2, ..., wik)

Lastly, we fit a standard logistic regression where the inputs are variables from set A:

yi = f(xi, wik∈A)

This procedure ensures that the variable of interest is retained, correlated controls are retained, and the effects
are estimated in an unbiased, generalizable fashion. Along with other tricks from statistical and machine
learning, regularization is a game-changer for the social sciences. Clever methods like Double LASSO selection
will continue to emerge as strategies to make machine learning techniques possible for inference.

8.4.2 DIY: Re-visiting health care coverage
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch08-lasso.Rmd.

Let’s revisit the health care targeting example and focus on the mechanics of applying LASSO regression.
While there are many regularized regression packages, we recommend the glmnet package for general appli-
cation of regularized regression and the hdm package for inference through LASSO.

https://github.com/DataScienceForPublicPolicy/diys

8.4. REGULARIZED REGRESSION 159

Load packages
pacman::p_load(glmnet, hdm)

Many ML packages expect input data to be in vector or matrix form. Recall from earlier chapters that
matrices do not support mixed data types. A matrix containing both wages (continuous variables) and
citizenship (discrete variables), for example, is stored as strings, posing a challenge for prediction. We can
solve this format issue by converting discrete variables into a dummy variable matrix also referred to as one
hot encoding in computer science parlance. A variable with g-number of classes is replaced with a matrix
of g variables, each of which contains binary indicators for the class. To avoid the dummy variable trap—a
situation in which one class can be predicted by all others—always remember that a g-class variable should
yield a matrix with (g − 1) variables. Below, we load health_wide—a re-processed version of the health
dataset that reflects these format requirements.
Load dataset
load("data/acs_health_expanded.Rda")

LASSO-Driven Prediction. We split the sample into train and test sets, creating a pair of vectors for the
target y and a pair of matrices for inputs x. Our example below makes the assumption that we would like
to consider all available variables in the dataset with the exception of the record identifier.
Randomly assign
set.seed(321)
rand <- runif(nrow(health_wide)) > 0.7

Subset train/test, drop ID variable, convert to matrix
y_train <- as.vector(health_wide[rand == T, 2])
x_train <- as.matrix(health_wide[rand == T, -c(1:2)])
y_test <- as.vector(health_wide[rand == F, 2])
x_test <- as.matrix(health_wide[rand == F, -c(1:2)])

The glmnet package is more flexible than any single LASSO or Ridge regression. It is built to estimate an
elastic net regression that is a hybrid of both LASSO l1 and Ridge l2 penalties. In addition to tuning λ, a
new tuning parameter α bounded between 0 and 1 controls whether the penalty will resemble more of a
Ridge or a LASSO. In our case, we are interested only in variable selection, making our choice of simple: set
α = 1 to make use of the LASSO.

l(β) =
n∑

i=1
[yiŷi − log(1 + eŷ)] − λ[α

K∑

k=1
|βk| + (1 − α)

K∑

k=1
|βk|2]

This still requires us to identify the optimal value of λ through cross-validation. The cv.glmnet vastly
simplifies the process by conducting the grid search:

cv.glmnet(x, y, family, cost, K)

where:

• x and y are the input variable in matrix format and the target variable in vector format,
respectively.

• alpha is the elastic parameter in which α = 1 is a LASSO and α = 0 is a Ridge.
• family indicates the type of model such as "binomial".
• type.measure is the loss function used to evaluate model fitness during cross validation

such as auc or deviance.
• nfolds is the number of partitions used for cross validation. Default set to 10.

lasso.mod <- cv.glmnet(x = x_train,
y = y_train,

160 CHAPTER 8. FRAMING CLASSIFICATION

alpha = 1,
family = "binomial",
type.measure = "auc")

The model outputs contain rich detail about the influence of lamba on the tuning results. As seen in Graph
(A) in Fig. 8.4, accuracy is generally higher when the model contains more input variables with an optimum
between −7 < log(λ) < −6. When log(λ) is overly restrictive, model performance drops precipitously. The
coefficient paths in Graph (B) show how fickle coefficients can be. Some can take on a wide range of values
while others are relatively stable, but regardless of the variable LASSO force all coefficients to zero.
(a) Cross Validated AUC
plot(lasso.mod)

(b) Coefficient Paths
plot(lasso.mod$glmnet.fit, xvar = "lambda")

−9 −7 −5 −3

0.
55

0.
65

0.
75

(A) Cross Validated AUC
log(Lambda)

AU
C

79 75 63 28 12 5

−9 −7 −5 −3

−3
−1

0
1

(B) Coefficient Paths
log(Lambda)

C
oe

ffi
ci

en
ts

79 70 26 5

Figure 8.4: Two graphs that illustrate the effect of tuning the hyperparameter log(lambda). For analytical
convenience, log(lambda) is logarithm transformed. Graph (A) shows that as the shrinkage parameter is
increased, the AUC falls. (B) Coefficient paths trace how a variable’s coefficient evolves for each value of
log(lambda), converging to zero at high values of the hyperparameter.

It will be tempting to tell a data-driven story from LASSO coefficients. In fact, it should be a part of
any adoption strategy for any prediction problems. But LASSO does not provide generalizable parameter
estimates. Nonetheless, a story informed by a cursory review of the LASSO coefficients can go a long way
toward trust in the predictions. We can extract the results from the optimized model using coef.glmnet,
setting the optimal value λ by specifying s = "lambda.min". As the coefficients are biased, we recommend
that you focus on identifying whether non-zero coefficients match the normative assumptions held by your
stakeholders—Are the coefficients moving in the right direction? does the model reflect what one might expect?
Can you trust how the model discounts certain variables?

opt_coef <- coef.glmnet(lasso.mod, s = "lambda.min")

Lastly, producing predicted probabilities is as simple as setting s = "lambda.min". With the results ready,
we can once again use the probabilities to guide recommendation engines and prioritization of tasks.

8.5. BEYOND THIS CHAPTER 161

Predict the target
yhat <- predict(lasso.mod, x_test, s = "lambda.min", type = "response")

Inference with LASSO regression. Let’s now consider an inferential problem using LASSO: What’s
the effect of citizenship on health insurance coverage? To answer this simple question, the Double LASSO
selection procedure can be applied to tease out the effect of citizenship on the health care story. The hdm
package implements the procedure in the function rlassologitEffect, seamlessly estimating each stage of
the selection process:

rlassologitEffect(x, d, y)

where:

• x is a matrix of control variables.
• d is a vector containing the focal variable.
• y is the target variable.

The coded example below illustrates that non-citizens are five times more likely (coefficient is β = 1.735,
thus the effect is e1.735) to be uninsured than citizens4. Unlike the LASSO estimates produced by glmnet,
the hdm estimate is unbiased and generalizable. This result is not much different than that of the plain vanilla
logistic regression, but imagine a scenario when the number of parameters k is large. We can see that this
procedure could enable generalizable inference at scale.
Set target and focal variable
target <- health_wide$no.coverage
focal <- health_wide$cit.non.citizen

Set x, removing the id, target, and focal variables
controls <- as.matrix(health_wide[,-c(1,2,5)])

Estimation
logit.effect <- rlassologitEffect(x = controls,

d = focal,
y = target)

Summarize results
summary(logit.effect)

8.5 Beyond this chapter
Given traditional and newer regularized methods, which should one choose? The answer lies in the use case.

Logistic regression and other traditional methods are heavily used when focusing on statistical inference
problems. In fact, fields like the social and medical sciences need to able to craft transparent narratives to
explain what influences behavior and outcomes, which in turn can serve as context and insights to inform
decisions. Traditional techniques are standard tools for inference, but this is not to say there is no room
for methodological innovation. Some seasoned practitioners will continue to rely on what they know, but
forward-leaning practitioners will drive adoption and acceptance over time.

Prediction problems, on the other hand, are quite different than inference. The focus is to pinpoint and
anticipate what will happen to guide decisions on who and what specifically needs help. Whereas inference
is concerned with interpretation of the coefficients β̂, prediction focuses on training an algorithm that can
be achieved consistent, generalizable out-of-sample predictions ŷi. While linear techniques could be used,
flexible machine learning algorithms can absorb more information and achieve markedly higher accuracy. It

4To see the model outputs, run the code made available on the DIY site.

162 CHAPTER 8. FRAMING CLASSIFICATION

is not always clear which technique performs best, however. Data scientists conduct a horse race of multiple
algorithms, crowning a winner based on the best predictive performance. Developing predictions is very much
part of computer science and certain areas of econometrics, but otherwise are novel to policy, social science,
and medical science environment.

Regardless of the use case, logistic regression is a solid first step for tackling any binary variable problem
in public policy. It offers a simplified and transparent perspective of a quantitative problem lends itself to
telling a narrative, and can support the rudimentary prediction problems. For organizations only starting to
work with data, logistic regression is a safe and transparent way to build trust in data before advancing to
more cutting-edge options.

Chapter 9

Three Quantitative Perspectives

Decision making in government can be a risky endeavor: policy makers often face complex questions in which
constituents lives and taxpayer funding are at stake. Reducing this risk typically requires the decision makers
to (1) sufficiently understand the context of the problem space, (2) conduct rigorous analyses that estimate
impacts of similar decisions taken in the past, and (3) build models that identify potential paths forward.
These fundamental inputs provide a evidence-based framework for decision making.

Let’s take the example of issuing emergency approval of a new vaccine during a global pandemic. In such
a setting, anxiety and stress can dominate the general sentiment of society. However, society is very het-
erogeneous. Some people may grasp for any promising solution, while others wait for the worse to pass
(potentially a luxury that the first group may not have). Governments face a pivotal decision: Should a
vaccine be approved on an accelerated schedule in order to alleviate societal unrest? The possible solutions
to this simple question have the potential for enormous benefits and risks.

Responsible governance plays a key role. Finding answers to this question requires a degree of trust between
the public and private sectors: Will both sides make mutually beneficial decisions that maintain order and
enable the conditions for success? But how can we know whether this trust and order are in the interest of
the general public? Data science can help decision makers understand the many factors that weigh into a
successful response to the pandemic. For example, decision makers may be interested to know the likelihood
of success and timing of medical trials, supply chain issues, market-power concerns, the actual demand for
the new vaccine, and impacts of pricing on vaccine uptake. Each of these considerations can be addressed
through a combination of (1) descriptive analysis, (2) causal inference, (3) and prediction. These three key
quantitative perspectives are certainly related; however, each component plays a distinct role in answering
the question.

Descriptive analyses rely on summary statistics to quantify the size, extent, and scope of the problem space.
These analyses are not causal—they do not prove that A causes B. They do, however, set the stage for
more advanced analyses. In the case of a new vaccine that has yet to be tested, descriptive analyses can give
context. For example, success rates of similar vaccines, the average cost of making a unit of vaccine, and the
likely demand for the vaccine.

Causal inference moves pass summary statistics and asks What is the effect of X on Y? These questions
focus on detecting and measuring the effect of a treatment (or intervention). Typically, the causal effect of
a treatment is inferred by comparing the outcome in a group that received treatment (the treatment group)
to another group that did not (the control group—also called the counterfactual for the treatment). In order
to estimate a causal treatment effect in this manner, it must be the case that the control group provides a
valid counterfactual for the treatment group. In other words: In the absence of a treatment, the treatment
group would be indistinguishable from the control group. When experiments are conducted under the right
conditions, researchers are able to unambiguously attribute an observed effect to the treatment.

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_9

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_9

164 CHAPTER 9. THREE QUANTITATIVE PERSPECTIVES

Imagine a group of individuals who have contracted a virus. In an experiment, the group is randomly
divided into two groups. The first group—the treatment group—receives an experimental treatment. The
second group—the control group—does not receive anything (or perhaps receives a placebo). If the two
groups begin with matching characteristics prior to the experiment and receive identical hospital conditions,
then any observed differences in recovery (or side effects) between the treatment group and the control
group can be attributed to the experimental treatment. In many situations, the size of the treatment effect
matters—not just its existence. The next step: Decision makers must weigh the size of the treatment effect
against other dimensions like side effects, other risks, and financial costs.

Descriptive analysis and casual inference describe what has already come to pass. Prediction and forecasting,
in contrast, look forward and ask the question “What if a pattern were to persist into the future?”. In order for
this quantitative crystal ball to be useful, the predictive model should have an ability to mirror real-world
phenomena with a high degree of accuracy. Typically this predictive model must prove itself superior to
competing approaches and human intuition, though these competing “models” can range from other highly
complex statistical models to spreadsheet “look-up tables” to intuition-driven ad hoc rules—or even the gut
of a veteran decision maker. It is only when a model demonstrates superior predictive performance when
decision makers may start to place some trust in the future that it predicts.

Continuing the example from above: using data from the described clinical trial, a predictive model could
be trained to predict whether an individual would respond well to the experimental anti-viral treatment—
or whether we might expect the individual to develop a reaction. If the model achieves a high degree of
accuracy, then the learned patterns could also be applied to patient records in insurance databases in order
to anticipate how an untreated population will respond to a vaccine treatment. Or perhaps the predictions
could help identify vulnerable population segments or areas for further improvement. The extent to which we
can generalize the insights of these algorithms onto new populations will depend on how well the algorithm’s
initial sample represents these new populations. As we discuss later, representation and fairness are important
principles in the prediction that are often overlooked.

When used together, these three quantitative perspectives jointly improve the quality of empirical insights.
It is helpful to acknowledge that each of these quantitative perspectives evolved under and is guided by a
different analytical tradition. In the public sector, however, these perspectives are often treated as a single
unit, e.g., data analysis. This lack of precision can sometimes lead to confused applications of methods. In
this chapter, we draw distinctions between these three perspectives and introduce vocabulary and concepts
that enable their use. We begin with a brief review of descriptive analysis—a sound starting point for any
data project.1. We then review causal inference—the crown jewel of program evaluation, policy analysis,
and the social sciences—from the lens of the potential-outcomes framework and related quasi-experimental
methods. The chapter closes with describing principles and best practices of predictive analysis.2

9.1 Descriptive analysis
Descriptive analyses are the foundation of any data science pursuit. Much like Exploratory Data Analysis,
these analyses characterize the problem space by drawing on simple summary statistics (e.g., the mean,
median, correlation, and standard deviation) and plots (e.g., histograms, scatter plots) to fill in the context
around a research question. Not only do these analyses help communicate patterns to stakeholders and inform
strategies but they also help assess how much trust data scientists can place on the data. For example, a
descriptive analysis focused on participation in a welfare program could describe the number of people who
rely on the program, the demographic distribution of participants, and the growth of the program throughout
time. These summary statistics can be presented to stakeholders to paint a better picture of the problem
space and give a clue about which policy strategies to consider. Stakeholders’ reactions to descriptive analyses
also contain useful information for data scientists—it could validate the insights derived from the data or
perhaps signal whether the insights were novel (e.g., news).

1Refer to Chapter 6 for a refresher on Exploratory Data Analysis (EDA).
2We will cover prediction extensively in subsequent chapters.

9.2. CAUSAL INFERENCE 165

In general, descriptive analyses focus on a few core analytical tasks, such as:

• Quantify the size and extent of the problem space. E.g., how many people use a health care service,
which services they use, where individuals tend to access each service.

• Discern correlated variables—especially variables that are associated with an outcome of interest. E.g.,
elderly individuals are more likely to use specific services. Another example: specific services typically
appear together (positive correlation) or rarely appear together (negative correlation).

• Determine sources of oddities in the data, such as sharp discontinuities, biases, missing values, or other
‘strangeness’ in the data.

Some of these tasks can be extended through regression analysis, allowing one to attribute the partial effect
of each input variable. While a regression model associates an outcome with a set of input variables, the
model alone does not determine if a model is causal or predictive. In fact, classical statistical theory always
reminds that correlation is not causation—there are well-accepted standards that define the conditions under
which causality exists. Likewise, a descriptive analysis should not be mistaken for a prediction.

As we illustrate in later sections, it can be quite challenging for an analysis to meet the conditions that make
for a valid causal inference or enable an accurate prediction. Even if an analysis is only descriptive, they can
still be quite powerful—many policy stakeholders are often starved for information and some information
is already much better than no information. For this reason, many analyses start and end as descriptive
analyses.

9.2 Causal inference
Detecting a causal relationship is often a tricky task. While humans naturally look for cause-and-effect
relationships in our lived experience, it is easy to misattribute the cause to the incorrect effect or even
to reverse the two. To combat this tendency of false causal attribution, researchers have devised a well-
structured framework for causal inference—essentially a science of inferring the causal effect of an event on
an outcome.

In order to detect and measure, a causal effect of some variable X on an outcome Y , certain conditions are
necessary:

• Correlation. If X causes an effect in Y , then we should observe some correlation between the two
variables. Above, we stated that correlation is not causation, meaning correlation is not sufficient to
establish causality. However, correlation is still necessary for causation.

• Temporal precedence. The cause X should precede the effect or outcome in Y .
• Elimination of extraneous variables We must be able to eliminate other variables that influence the

outcome (akin to ruling out alternative explanations). We want a clear causal pathway between the
potential cause X and the outcome Y .

For example, let’s return to the experimental anti-viral treatment. Suppose an individual receives the treat-
ment. According to these three conditions, the vaccine is said to cure an individual (i.e., cause improvement)
if (1) the treatment eliminates symptoms (correlation between the treatment and the outcome), (2) the symp-
toms reduce only after administering the drug (temporal precedence), and (3) the vaccine is the only known
influence (elimination of extraneous variables). For any individual, we can easily verify the first two condi-
tions, but the third requirement is far more challenging. How can we rule out all other potential influences?
What if some other factor coincided with timing of the drug? Did the drug cause the illness to dissipate, or
was it some other event correlated with the application of the drug? Perhaps the weather improved around
the same time we administered the treatment. Or what if the patient was already beginning to improve when
she received the treatment? To be certain that the drug caused the patient’s improvement, we must either
know all other influences of the outcome or be able to observed the same exact individual under identical
conditions except without receiving the treatment. The first requirement demands God-like knowledge of our
patient’s biology. It essentially requires knowing all causes to determine the cause. The second requirement
necessitates traveling through time—or to parallel universes. While time travel is also implausible, we can
actually make some progress here. We effectively have a missing data problem, where the missing datum is
the outcome if the individual has not received the drug. Statistics can deal with missing data, but less so
with the demands of omniscience.

166 CHAPTER 9. THREE QUANTITATIVE PERSPECTIVES

At its heart, causal inference is a missing data problem. We only see the world as it happened. We do
not have the chance to see counterfactuals (what the world would have looked like had one thing been
different). To resolve this missing data problem—to shed light on the missing counterfactuals—we need an
identification strategy to tease out (identify) the effect of a treatment. Within modern statistical traditions,
two main structures are currently used to declare treatment effects as causally identified: the potential
outcomes framework (also called the Neyman-Rubin causal model) (Imbens and Rubin 2015) and directed
acyclical graphs (DAGs) (Pearl 2009). We will focus exclusively on the former, as it is presently the dominant
method in political science, economics, and other social sciences, but we encourage readers to examine the
latter as they are quickly becoming common.

9.2.1 Potential outcomes framework
To solve this missing data problem, we need to generalize beyond a single individual’s treatment effect—
broadening the estimated effect to be an average treatment effect—the average within the group of treated
individuals. To formally define this treatment effect, it is helpful to introduce some concise mathematical
notation.

We will use the variable D to refer to treatment status. Specifically, for the ith individual, Di = 1 denotes
that i received the treatment (e.g., our individual received the anti-viral drug). Conversely, Di = 0 implies
that individual i was untreated.

Similarly, Y1i gives individual i’s outcome when she receives treatment3, and Y0i references individual i’s
outcome when she is untreated.

The difference between individual i’s treated outcome (Y1i) and untreated outcome (Y0i) gives the treatment
effect for individual i, i.e., τi = Y1i − Y0i (where τi is the effect of treatment effect for i). Now we return to
the problem of missing data: we cannot simultaneously observe both Y1i and Y0i. If we observe i’s outcome
when she is treated (Y1i), then we do not get to see i without treatment—Y0i is missing. Similarly, if we
observe Y0i, then we cannot observe Y1i.

Identification strategies are essential methods for filling in this missing data. If Y0i is missing (because we
observe Y1i), how can we fill it in (or estimate it)?

Part of the solution to this missing data problem is to move to an average treatment effect τ , rather than the
individual-level treatment effect τi. As its name implies, the average treatment effect is literally the average
of the individual treatment effects for some set of individuals: τ = 1

N

∑N
i=1 τi.

Let τ̂ refer to an estimate of the average treatment effect τ . How might we estimate this average treatment
effect?

One possibility that naturally comes to mind: Can we just take the difference between the average outcome
in the treated group and the untreated group? Let’s write this formally:

τ̂ = 1
N1

N1∑

i=1
(Yi|Di = 1) − 1

N0

N0∑

i=1
(Yi|Di = 0)

where the notation
∑

i(Yi|Di = 1) refers to the sum of the outcomes for all individuals who received
treatment and similarly for Di = 0. Also: Let N1 and N0 be the numbers of treated and untreated individuals,
respectively.

Now back to our big question: When does τ̂ provide a good estimate for the average causal effect of treatment?

The recipe for success lies in achieving ignorability: We want the treatment and control groups to be indis-
tinguishable along dimensions that are relevant to our outcome Y . It would be easy if we could perform
the group-wise comparison (the difference in means). However, in “the real world”, simple group-wise com-
parisons, without a legitimate identification strategy rarely result in “good” causal estimates. Why? When

3The 1 in the subscript again denotes treatment.

9.2. CAUSAL INFERENCE 167

individuals are allowed to select into or out of treatment, selection bias typically occurs: the two groups will
differ on important dimensions. For instance, people who select to receive an experimental drug treatment
may be fundamentally different from individuals who do not choose to participate in such a treatment. If
that is the case, the difference between the treatment and the control groups’ averages will include both
the treatment effect and differences between the two groups of people. This latter component biases our
estimates of the treatment effect and is often called selection bias. This bias results from confounding non-
treatment factors with treatment, which means that we run the risk of misattributing the effect of treatment
to underlying differences between the two groups. With selection bias, the control group (individuals for
whom Di = 0) does not provide a realistic counterfactual for the individuals in treatment group.

How can the incidence of confounding factors be minimized? Researchers in experimental settings tend to
rely on randomized control trials (RCTs), which can achieve ignorability by randomly individuals’ assigning
treatment statuses—essentially flipping a coin to determine whether an individual is placed into the treatment
group or the control group. Through random assignment, we introduce statistical independence between the
treatment (Di) and the other factors that affect our outcome. This independence greatly reduces the risk of
confounding factors.4

Some public programs can be randomized. For example, when a school has more applicants than seats, the
school will often conduct a random lottery to select its students. However, it is often the case in public
policy that we cannot randomly assign policy changes to individuals—due to ethical or cost issues. Instead,
researchers look for natural experiments in observational data in which randomization naturally occurs. For
example, we might be interested in the effect of a minimum wage change and compare businesses on either
side of a state border as in Card and Krueger (1994). Or perhaps we could leverage close election results to
evaluate incumbency advantages as in Lee (2008).

A primary feature of these natural experiments is that, due to the assumptions regarding way, the treatment
is applied, individuals become “as good as” randomized. The assumptions that we put on the treatment
process and the data are part of our identification strategy, or the way we effectively turn observational
data into a reasonable proxy for experimental data. The term identification strategy first appeared in the
economics literature with Angrist and Keueger (1991) and has since become ubiquitous when discussing
the estimation of causal effects. We would like to emphasize, what makes an estimate “causal” is not the
model specification nor the data, but rather the specific assumptions one places on the process and model—
the validity of an identification strategy. Estimates are only causal in so far as the assumptions made are
believable.

In this section, we introduce two strategies that enable the pursuit of causal inference: Regression Discon-
tinuity (RD) and Difference-in-Differences (Diff-in-Diff or DID). Both techniques are frequently used with
experimental data and observational data, allowing inference under different situations.

9.2.2 Regression discontinuity
As first described in Thistlethwaite and Campbell (1960), regression discontinuity (RD) design is a framework
which, under certain assumptions, mimics an RCT (Cook and Wong 2008) when given observational data.
This is a powerful concept as gathering data through an RCT can be cost-prohibitive and invasive. The
Thistlethwaite and Campbell (1960) study examined the effect that receiving public recognition through
honorary awards had on educational outcomes (e.g., receipt of scholarships). Importantly, they relied upon
a qualifier that identified which students would then go on to receive the honorific. In this particular case
they used scores from the CEEB Scholarship Qualifying Test with those receiving a sufficiently high score
being eligible for the honorific. In short, the honorific was a deterministic outcome of the test score.

If the relationship between the test score and honorific is known, why do we need anything else to make a
statement about causality? The short answer is selection bias. Test scores measure the underlying ability,
which is not strictly observable. There are groups of students who always would have received the honorific
based on their scores, we call these always takers. Conversely, there is a group that lacks the ability to obtain
a high score on the test and thus be eligible for the resulting award, we call these never takers. It is hard to

4Significant differences between groups can still happen by chance (i.e.„ “the luck of the draw”).

168 CHAPTER 9. THREE QUANTITATIVE PERSPECTIVES

make the case that we can estimate a causal effect of the honorific if we know the outcome beforehand for
a group of students. This is why the focus is on compliers, or the group of students around the cutoff used
to determine the eligibility for treatment. We would imagine that the probability of receiving an honorific
jump at some cutoff along with the test score variable—the score that helps identify the probability jump is
known as a running variable (or forcing variable).

Why do we focus on compliers?. Suppose the cutoff is a grade of 80%; then it might be reasonable to think
that a student which received a 79% is interchangeable with one who received an 81%. More plainly, we can
consider them to have identical ability and observable characteristics (on average), and that their presence
on either side of the cutoff had to do with pure chance. This is how the RD design approximates the RCT
and allows us to draw causal inferences from the estimates.

On a more technical level, RD consists of a treatment which is a monotonic (i.e., either never increases or
never decreases), deterministic (i.e., not random), and discontinuous (i.e., involves a sharp break in trend)
function of a running variable, Z. Here, we will use Z to denote the a vector of length N of observed forcing
variable values, and zi to denote the value for the ith individual. Additionally, assume the treatment is of
the form,

qi

{
1 zi ≥ Z0

0 zi < Z0

where Z0 is some cutoff for treatment eligibility, qi denotes the treatment status of the ith individual and
Q to denote the N -dimensional vector of treatment indicators for the sample. A key feature is that the
probability of treatment “jumps” from zero to one at some threshold.5 The simplicity of this design makes
it a common causal inference strategy in public policy.

Simulating a discontinuity. One challenge we face with any RD is that it is unlikely that we know the true
treatment effect, but through simulation, we can test to see how close the technique can be to measuring the
treatment effect. Visualization plays a key role in identifying a discontinuity—a sharp discontinuity should
involve a slope change or step change. Let’s simulate what a random dataset with a discontinuity could
look like in the wild. The simulated dataset below includes a running variable Z with N = 10000 normally
distributed observations centered at zero along with a binary variable Q to indicate whether a record is above
the cutoff of Z0= 0.
Set random seed for reproducibility
set.seed(3264)

Let’s generate data
N <- 1e4 # Number of observations
Z <- rnorm(N, 0, 5) # Running Variable of mu zero, standard deviation 5
Z0 <- 0 # Cut-off point
Q <- (Z > Z0) * 1 # Binary variable

Construct data frame
example_data <- data.frame(Z = Z, Q = Q)

In Figure 9.1, we plot the simulated series. By design, there is a sharp jump in probability of treatment
at Z = 0. Furthermore, notice that there is not any overlap between the treatment and control groups at
zero—an agent (e.g., observation in this case) is either treated or not based on zi = z. The case where two
agents have different treatment statuses with the same value of the running variable is strictly forbidden,
otherwise the analysis in invalid.

5For simplicity, we have confined the conversation to what is called a “sharp” regression discontinuity design. For cases in
which compliance around Z0 is not perfect (or assumed perfect) there is also a “fuzzy” RD design. See Lee and Lemieux (2010)
for a discussion.

9.2. CAUSAL INFERENCE 169

0.00

0.25

0.50

0.75

1.00

−20 −10 0 10 20
Running Variable

Pr
ob

ab
ilit

y
of

 T
re

at
m

en
t

Figure 9.1: Plot of running variable and by probability of treatment.

With the running variable set, we can expand this simulation to add an outcome variable that is dependent
upon the running variable and treatment status.6 We use the following equation to simulate a real-world
outcome:

Y = α + ζZ + τQ + ε

where Y is the outcome, Z is the running variable, Q is the treatment indicator, and ε is an identically and
independently distributed error term. Our objective is to measure the effect of Q on the outcome Y . In the
simulation, we explicitly set the treatment effect as τ = 3, thus our objective when applying the tools of
regression discontinuity is to estimate a treatment effect of the same size.
Basic assumptions
epsilon <- rnorm(N) # Random error
tau <- 3 # Size of the treatment
alpha <- 20 # Intercept
zeta <- 0.5 # Slope of the running variable

Linear formula
Y <- alpha + zeta*Z + tau*Q + epsilon

New dataset
simulated_rd_data <- data.frame(Y = Y,

Z = Z,
color = ifelse(Q == 1,’blue’,’lightblue’))

The simulated treatment effect can be clearly seen in the pair of graphs in Figure 9.2. The histogram of
the outcome Y is bi-modal, indicating that there are two sub-populations present—something caused the
distribution to split. We see further evidence of this hidden influence in the scatter plot of the outcome Y
against the running variable Z. The treatment and control groups sharply split at a threshold value. It is
worth noting that, in practice, finding the running variable will require careful exploratory data analysis.

Measuring the treatment. With the simulation in place, we turn our attention to measuring the treatment
effect, written as the expectation of

E[(yi|qi = 1) − (yi|qi = 0)|zi = z]
6Note that this assumption of linearity is not required and is only being made here for ease of exposition. While higher order

polynomials are discouraged, they often see use in empirical work. See Gelman and Imbens (2018) for more in-depth treatment.

170 CHAPTER 9. THREE QUANTITATIVE PERSPECTIVES

0

250

500

750

1000

10 15 20 25 30 35
Outcome Variable

C
ou

nt
(A) Distribution of Outcome

10

15

20

25

30

35

−20 −10 0 10 20
Running Variable

O
ut

co
m

e
Va

ria
bl

e

(B) Outcome vs. Running

Figure 9.2: (A) A Histogram of the outcome variable, (B) A scatter plot of the running variable and outcome.

where (yi|qi = 1) is the observed outcome and (yi|qi = 0) is the corresponding counterfactual. More plainly,
we would like to know what the effect of treating individual i is on their outcome, yi, relative to a world
in which they were untreated. Of course, we are unable to observe both worlds simultaneously. Adopting
notation from Gelman and Imbens (2018), we can write this as

τ = lim
z↓Z0

E(yobs
i |zi = z) − lim

z↑Z0
E(yobs

i |zi = z),

where τ is the local average treatment effect (LATE)—this is our strategy for retrieving the explicit treatment
effect in the simulation.

Why do we estimate LATE rather than an average treatment effect over the entire sample? To have confidence
in our treatment effect, LATE only applies to compliers who immediately feel the effect of the treatment,
while always and never takers are not influenced by the treatment. Agents that are closer to the treatment
cutoff are more similar to one another—their relative position to one another is arbitrary. This arbitrariness
can be interpreted as random assignment. Yet agents that are far from the threshold are more likely influenced
by unobserved factors other than the treatment (e.g., student ability). LATE focuses on finding a subset
located slightly above and below the threshold to tease out the treatment effects. These assumptions are
what allows us to draw a causal inference from an ordinary regression coefficient.

We have laid out the mathematics and can now estimate the treatment effect using the rdrobust package.
Remember that we are estimating the effect based on the compliers, requiring us to identify which observa-
tions would be considered our always and never takers as well. The rdrobust package simplifies an otherwise
computationally intensive process.
Load RD Robust package
pacman::p_load(rdrobust)

Estimate RD
rd_estimation <- rdrobust(y = simulated_rd_data$Y,

x = simulated_rd_data$Z,
c = 0,
all = TRUE)

Show result
summary(rd_estimation)

9.2. CAUSAL INFERENCE 171

Table 9.1: Regression estimates of LATE with bandwidth size.

Method Coefficient SE Side Full n Effective n

Conventional 2.987 0.061 Below 4984 2316
Bias-Correction 2.973 0.061 Above 5016 2300

Robust 2.973 0.072 Total 10000 4616

10

15

20

25

30

35

−20 −10 0 10 20
Running Variable

O
ut

co
m

e

(A) Outcome vs. Running

10

15

20

25

30

35

−20 −10 0 10 20
Running Variable

Bi
nn

ed
 O

ut
co

m
e

(B) Binned

10

15

20

25

30

35

−1.0 −0.5 0.0 0.5 1.0
Running Variable

Bi
nn

ed
 O

ut
co

m
e

(B) Compliers Only

Figure 9.3: Three views of the outcome and the running variable: (A) raw data, (B) binned by discrete
interval, (C) compliers only.

As seen in Table 9.1, the regression estimate for τ was 2.987, representing the average vertical distance
between the two point clouds at the cutoff point, Z0 = 0. Notice that we combined the regression techniques
from the previous chapter, along with some assumptions about the relationship between the running variable,
Z, and the treatment status Q to derive a causal estimate of Q on Y .

In order to estimate the treatment effect, the sample size was reduced from n = 10, 000 observations to
n = 4616. This effective sample size reflects an automated search for the optimal bandwidth (e.g., window
of observations) to ensure the treatment effect reflects the effect on compliers.7 Indeed, it is a weakness of
RD that so much data is both required and discarded in the process, we did not use nearly half our sample!

For good measure, let’s plot the results and get an idea of what the regression lines look like and how the
measure of τ is reflected in the data. In Figure 9.3, we visualize a standard set of visual robustness checks.
Whereas Graph (A) plots the raw data, Graph (B) bins the data to approximates the value of the outcome
for small equal intervals. Close to the center of the plot, we see two parallel but staggered lines that mark
the effective sample size. In Graph (C), we take a closer look at the compliers and find that the regression
line closely aligns with the binned estimates, which lends confidence to the results.

There are many creative applications for RD. In the transport market, for example, Cohen et al. (2016)
apply a RD design to a large scale dataset to estimate the entire demand curve for UberX (ride-sharing
service). This, in turn, helped to estimate the associated consumer surplus in four US cities—approximately
$2.9 billion in 2015. In politics, Lee (2008) found that incumbency has a large influence on Congressional
Elections (specifically for the U.S. House of Representatives) that were narrowly won. In fact, incumbency
raises the probability of an electoral win by 0.4–0.45 (40–45 percentage points). These findings are exciting
and illustrate the power of the technique. And in practice, the treatment effect can directly be used to
inform cost benefit analyses and decisions for whether a program or policy is effective or a good investment.

7We do not go into the selection of the bandwidth and leave it to the reader to examine various options for selection. See
Imbens and Kalyanaraman (2012) and Calonico, Cattaneo, and Titiunik (2014).

172 CHAPTER 9. THREE QUANTITATIVE PERSPECTIVES

At the same time, RD estimates are applicable to only a narrow bandwidth around the treatment. The
results are internally valid but may not be generalizable beyond those conditions—a great way for telling a
story, but may require significant disclosure of the conditions under which the effect can be replicated when
implementing a policy.

9.2.3 Difference-in-differences
Difference-in-Differences (DID) combine regression techniques with assumptions about how the data was
generated to facilitate causal inference. Like RD, DID relies on features of the data in a different way:
we monitor two otherwise similar groups for a divergence in trend that can be attributable to an outside
treatment.

Perhaps one of the most famous examples of a DID is Card and Krueger (1994), which examines the effect
of minimum wage changes on employment in the fast-food industry. In this study, the authors leveraged the
proximity of fast-food restaurants in two states, Pennsylvania (PA) and New Jersey (NJ), which differed
primarily through the introduction of a minimum wage change in New Jersey. Their outcome of interest,
employment, was measured in both states before and after the minimum wage change—a simple pre-post
design. They then compared the changes in employment between the two states, making the assumption
that fast-food restaurants just across the border in Pennsylvania could be considered as valid counterfactuals
(what did not happen) for those treated restaurants in New Jersey. We can write this two-period, two-state
effect as

(

E(Empst|s = NJ, t = 1)− E(Empst|s = NJ, t = 0)
)

︸ ︷︷ ︸
First difference in employment in NJ

−
(

E(Empst|s = PA, t = 1)− E(Empst|s = PA, t = 0)
)

︸ ︷︷ ︸
First difference in employment in PA

Note how in both states, we first take the difference of the pre- and post-treatment employment (Empst)—a
difference over time. Then, we take a second difference between the two states, hence the name Difference-
in-Differences. The key assumption of the DID framework is the parallel trends assumption. Simply put, this
assumes that in the absence of the treatment, the distance between the treated units and their untreated
counterparts would have stayed constant over time.

Let’s see what that means in practice. Suppose we have two groups of agents: one treated (Nd=1) and one
untreated (Nd=0). Over time, these two groups tend to follow a similar trend which we can write as

Yt|d=1 = αd=1 + λt + φd=1Yt−1|d=1 + εt

Yt|d=0 = αd=0 + λt + φd=0Yt−1|d=0 + εt

where Yt|d=1 is the outcome of interest at time t for the treated group d = 1, and αd=1 �= αd=0. For simplicity,
we will assume in this case that φd=1 = φd=0 = 0 and the distribution of εt is common to both groups.8
Despite the randomness introduced by εt, both groups move in parallel due to the shared λt term, the only
difference is contained in their intercepts.

Getting started. Let’s import a simulated dataset to illustrate how a DID works in practice. The did_data.Rda
file contains two data frames:

• did_data contains n = 2000—k = 100 records over T = 20 periods—it is a panel dataset. The variables
of interest are the outcome y in stacked format, a treated dummy for each control and treatment,
and the time variable.

• projected_data contains a simulated counterfactual—what would the treatment look like if no treat-
ment occurred (a straight projection of the previous trend).

8Additionally, we have suppressed the subscript i for readability but one could imagine that the units of observation are
individuals or firms in which we record the appropriate data in every time period.

9.2. CAUSAL INFERENCE 173

While all records could be graphed, we can more easily spot the parallel trend lines by first aggregating the
panel data using dplyr.
Load packages
pacman::p_load(dplyr, ggplot2)

Load data
load("data/did_data.Rda")

Calculate mean by treatment group and time period
did <- did_data %>%
group_by(time, treated) %>%
summarize(mean.y = mean(y))

Calculate mean for counterfactual
cf <- projected_data %>%
group_by(time, treated) %>%
summarize(mean.y = mean(y))

Figure 9.4 illustrates the parallel trend assumption in action prior to time = 10. Our control group (solid
black line) at the bottom runs parallel to the treatment group (light blue and dashed blue lines) prior to
time = 10. A longer time series in this pre period builds the case that treatment and control are indeed
comparable. After time = 10, the treatment causes a sharp step change, then returns to the parallel trend.
This pattern suggests that the effect of interest is the step change—the instantaneous effect of the treatment.
In many settings from medicine to technology, the geometry of treatment effects will often follow this pattern.

40

60

80

100

5 10 15 20
time

O
ut

co
m

e

Figure 9.4: Average over time and treatment status.

We can extract the treatment effect through an DID estimator using regression:

Y = β0 + δ1treat + δ2post + δ3(treat × post) + ε

where post and treat are dummy variables for the post-treatment period and treatment series, respectively.
Notice that the formula does not include a time trend, which is not necessary when control and treatment
groups move in parallel. This regression can easily be implemented:

174 CHAPTER 9. THREE QUANTITATIVE PERSPECTIVES

Time period treatment was applied
tau <- 10

Pool the pre and post treatment periods
did_data$post.dumm <- ifelse(did_data$time > tau, 1,0)

Estimate the model
did_model <- lm(y ~ treated*post.dumm, data = did_data)

Get regression summary
summary(did_model)

What can we infer from the regression results (Table 9.2)? It tells us that the difference between the observed
treatment and the assumed counterfactual is approximately 10 units. Because of the parallel trend assump-
tions, we can safely infer that the treatment at time period 10 caused a 10 unit change in the outcome for
the treated. Now, this is clearly a very simple example with little noise and only a single treatment at a
single time period. Often these designs are done when the noise is significantly greater, requiring careful
consideration of adjustment variables and functional form. For further treatment for more complex DID
designs, refer to Bertrand, Duflo, and Mullainathan (2004); Goodman-Bacon (2018); and Athey and Imbens
(2018).

Table 9.2: Difference-in-Differences regression results.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 46.09 0.3376 136.5 0
treated 15.1 0.4775 31.62 3.245e-178

post.dumm 20.15 0.4775 42.2 1.093e-278
treated:post.dumm 9.981 0.6753 14.78 5.403e-47

9.3 Prediction
Causal inference focuses on extracting treatment effects with a high degree of confidence, focusing on answer-
ing why. Prediction, in contrast, answers questions about who, what, when, and where—anticipating what
will happen. Interestingly, a regression used for causal inference could also be used for prediction. However,
what makes for good causal inference is whether the experiment design handily illustrates the validity of
the treatment effect (e.g., were the conditions met, are there no other sources of influence). For example,
measuring the effect of a new coal plant on housing prices requires evaluating the qualities of a model when
applied in-sample. As seen in Figure 9.5, a typical estimation flow uses one dataset for both effect estimation
and calculating model performance.

Prediction, on the other hand, focuses on making guesses given available information. Models serve as a
window into what can be, and for them to be useful, they must be accurate when applied out-of-sample
(i.e., new data). The language of prediction is also different: a model is trained to predict a target (also
known as the outcome or dependent variable) by learning patterns from input variables (also known as input
features, explanatory variables, independent variables, etc.). When a model has been trained, it can score (to
be applied) an out-of-sample dataset. This idea of scoring is another way of saying “Given what the model has
seen before and if we assume the new data follows the same paradigm, what will the outcomes be in this new
dataset”. It is possible to simulate an out-of-sample dataset, but it is also necessary to understand if fresh
data is available at the cadence required for a prediction application. In our modern economy, prediction
is the name of the game. Self-driving cars need new data multiple times a second so a machine learning
system can score road conditions to make driving decisions. E-commerce recommendation systems need user
interaction and events so models can learn preferences. There is a whole host of other practical applications
when prediction problems are well designed.

9.3. PREDICTION 175

To determine if a model will be useful out-of-sample, we need a model validation design to tease out its
predictive qualities. One basic approach is a train-test design in which data are randomly split into a train
set to develop the model and a test set on which accuracy can be calculated. Partitioning the data allows
us to simulate how a model will behave in the wild without having to collect more data. In general, the
accuracy of a model will be higher in-sample than out-of-sample. Model validation like train-test among
others quantify how much of a drop we should expect when a model is deployed.

Figure 9.5: Comparison of typical flow for model estimation (for causal and descriptive analyses) versus a
train-test design for prediction.

In this section, we introduce the foundational concepts of prediction, starting with understanding are the
qualities of accuracy measurement and how it is calculated. As we had briefly described, the trick to successful
prediction is to approximate how the model will perform in the wild. We describe a number of common model
validation designs that convert ordinary error functions into generalizable accuracy ratings.

9.3.1 Understanding accuracy
Bias-Variance Trade-off. Accuracy and error are two sides of the same coin. Accuracy has a positive
connotation—how close are we to predicting a value, while error is how far are we from the value. What is
more important is how we look at error in a prediction context. It turns out that error can be divided into
two components: irreducible and reducible:

Error = Reducible + Irreducible

= (Bias + V ariance) + Irreducible

Irreducible error is the natural uncertainty that arises from the data collection process. It is irreducible as
there is nothing we can do about it other than changing how the data is collected. For example, Chen et al.
(2019) applied advanced machine learning techniques to predict the growth of the US services sector. While
the results were promising, they illustrated that their prediction error could not achieve an accuracy that is
less than or even equal to the sampling error (see Figure 9.6). In other words, if the underlying data is noisy,
there is little we can do about it. Another way of viewing irreducible error is how “noisy” the data is—are
trends clear or fuzzy? Clear patterns are likely to have less irreducible error, while fuzzy patterns have more
irreducible error. If the target is too noisy, the prediction can be anyone’s guess and it is not a good use of
time to pursue.

For simplicity, we consider reducible error in a regression context, which can be further decomposed into
Bias and Variance (Hastie, Tibshirani, and Friedman 2001). The following formula shuffles around many of
the same elements (e.g., f̂(x)), but the nuances have large implications:

176 CHAPTER 9. THREE QUANTITATIVE PERSPECTIVES

Figure 9.6: Prediction error of machine learning models developed in Chen et al. (2019) and the sampling
error of the target variable collected by US Census Bureau surveys. The dashed line indicates the hypothetical
scenario when prediction error is equal to sampling error.

Reducible =
(

E[f̂(x)] − f(x)
)2

︸ ︷︷ ︸
Squared Bias

+ E

[

(f̂(x) − E[f̂(x)]2
]

︸ ︷︷ ︸
Variance

Bias is the difference between the expected model f̂(x) and the theoretical true model f(x) when fit on
the training data. This quantity can be thought of as the error that arises from erroneous assumptions—
the data scientist’s operating assumptions do not reflect what is truly happening in the data. If we think
back to the cases of nonlinearities in the regression chapter, for example, a straight line is an oversimplified
approximation of a curve—it has high bias.

Variance is the error associated with when a model learns random, irrelevant patterns in the data—a fixation
on the eccentricities of a specific dataset rather than the prevailing signal. Another way to think of variance
is to consider how one model will perform on multiple datasets on the same subject. If a model f̂(x) is trained
on datasets {D1, D2, ..., D3} drawn from the same process (e.g., housing data, welfare use, etc.), would their
predictions be similar when applied to Dn? If the predictions wildly vary from set to set, then the model has
high variance. In practice, higher variance occurs when a model is complicated by too many variables.

Data scientists must strike a balance between bias and variance—working with the Bias-Variance Trade-
off . In Figure 9.7, we illustrate three models that were fit on Bitcoin prices between 2010 and 2017. The
first model (A) fits a straight, inflexible line through the time series, missing the fluctuations. The model is
considered to be underfit as it consistently misses the variability in Bitcoin prices. Underfit models have large
bias as the model has too few variables to describe the pattern in the data. Model (B) follows the Bitcoin
price trend quite well with one hiccup: it is noisy and introduces patterns that are not largely seen in the data.
The model is overfit as it has high variance from having an excess of input variables—it finds correlations

9.3. PREDICTION 177

between variables and the noise. As a result, when the model is applied out-of-sample, it introduces these
artifacts that did not actually exist. In contrast, Model (C) is balanced—it is not too simple and not too
complex. A Swedish word provides a simple description of this balance lagom—just the right amount.

What does this mean for policy? In pursuit of policy, there will always be pressure to tell the story about
how specific X’s influence Y . These cases require higher bias in order to tell a clear story. But for producing
accurate predictions, we might need to lower the bias (i.e., more complexity) in order to increase accuracy.
But models should not be so complex (very little bias) that predictions are noisy (high variance). Therefore,
models for telling the policy narrative will generally be simpler than models for prediction.

(A) Underfit (B) Overfit (C) Balanced

Figure 9.7: Bitcoin prices and how three different models for the data. Data obtained from Coindesk.

Loss Functions. The bias-variance trade-off describes the qualities of accuracy at a conceptual level. We
concretize the notion of error through loss functions that allow us to directly calculate error. All models
are wrong, but the question is by how much? For a set of predictions, we need to apply our beliefs on how
accuracy is computed—what is the cost of being incorrect. This idea is much less about the cost induced by
being wrong, but rather how we treat wrongness.

Let C be the cost of an inaccurate prediction and ŷ be the predictions themselves, then we can write the
cost function as

C = f(ŷ)

The form that f takes should reflect our beliefs about error and help compare the performance between
alternative models. Suppose we believe that all errors—regardless how large or small—hold the same weight.
Mean Absolute Error (MAE, or L1 loss) operationalizes this belief:

MAE = L1(ŷ, x̃) =

√
√
√
√ 1

N

N∑

i=1
|yi − ŷi|

where yi is the observed outcome and ŷi is the prediction we generated. The L1 loss function is strictly
positive and a perfect prediction would result in an L1 value of zero. Lower the value of the L1 loss function,
the better the predictions.

Large errors, however, are hard to ignore. A large miss can cause the trust and faith that your stakeholders
have in your work to erode quite quickly. To find models that are more robust to outliers, consider a convex
loss function— one that places a greater penalty on large misses. Squaring the errors leads to what is called
an L2 loss function which can be written as

178 CHAPTER 9. THREE QUANTITATIVE PERSPECTIVES

RMSE = L2(ŷ, x̃) =

√
√
√
√ 1

N

N∑

i=1
(yi − ŷi)2

Notice that the magic lies in how we treat the residual (yi − ŷi). Like L1, smaller values of the L2 error are
preferable.

Loss function in action. The value of loss functions can be easily seen when applied to real data. Below,
we import a dataset of nighttime lights derived from satellite imagery collected by the US Defense Meteoro-
logical Satellite Program (DMSP). For this example, we use a derivative dataset containing the median light
intensity for each month over a 20-year period between 1993 and 2013 (National Oceanic and Atmospheric
Administration 2016; Gaba et al. 2016).9 The World Bank, Development Seed among other international
development organizations have experimented with this data to measure and predict the impact of electrifi-
cation in the developing world (Min 2014; Min and Gaba 2014)—it is an intriguing proxy of infrastructure
development. While the dataset is quite extensive, we focus on light intensity data for the northern Indian
state of Uttarakhand.
load("data/ntlights.Rda")

Our objective is to produce a regression forecast model using a time trend and monthly dummies, choosing
from two alternative specifications:

Lightt = β0 + β1timet + β2time2t + εtLightt = β0 + β1timet + β2time2t + δ1montht,1 + ... + δ11montht,11 + εt

The first equation is a quadratic time trend model while the second adds seasonal dummies. Granted, these
are simple models that produce deterministic predictions, but are suitable for illustrating loss functions. The
imported data can be partitioned into a train set (1993 through 2007) and test set (2008 through 2013). We
then train the regressions with the pair of specifications, score the test set, then add the predictions to the
test set.
Partition into train and test
train <- lights[lights$year <= 2007,]
test <- setdiff(lights, train)

Train two models
model1 <- lm(vis.median ~ poly(date,2), data = train)
model2 <- lm(vis.median ~ factor(month) + poly(date,2), data = train)

Score test set and add to the test set
test$yhat1 <- predict(model1, test)
test$yhat2 <- predict(model2, test)

Before calculating the loss functions, let’s inspect the two time series predictions relative to the actual
nighttime lights series for Uttarakhand (see Figure 9.8). Model 1 (blue) produces a straight line—it does not
anticipate the fluctuations or outliers, indicating that the underlying model is likely underfit. Model 2 (light
blue), in contrast, anticipates some of the seasonal patterns in some times of the year while injects patterns
in others—an indication of being overfit. In short, both models are far from perfect, but which seems to be
more accurate?

To put the loss functions to the test, we need to first write an errors function to calculate the MAE (L1
loss), RMSE (L2 loss), as well as the out-of-sample R2 for a set of predicted values yhat and the target y.
The custom function can then easily construct a data frame of results for each model.

9The sample contains the median night-time light intensity for each DMSP satellite that was in operation, thus a single
month can have multiple values from different satellites.

9.3. PREDICTION 179

−2

0

2

4

6

2008 2010 2012 2014
Time

M
ed

ia
n

Li
gh

t M
ea

su
re

m
en

t

Figure 9.8: Comparison of action median light intensity for Uttarakhand. with two simple forecasts: model1
(blue) and model2 (light blue).

Set up loss function
errors <- function(yhat, y){
out <- data.frame(r2 = cor(y, yhat)^2,

mae = mean(abs(y - yhat)),
rmse = sqrt(mean((y - yhat)^2)))

return(out)
}

Calculate results
results <- rbind(errors(test$yhat1, test$vis.median),

errors(test$yhat2, test$vis.median))
results <- cbind(model = 1:2,
results)

It turns out each function tells a different story (Table 9.3). When judging based on R2, Model 2 tends to
fluctuate more closely with target variable than the other model—their shapes are more similar. But closer
inspection shows that Model 2’s errors can be fairly large. While most peaks are anticipated with seasonal
dummies, the troughs tend to miss far more than Model 1. In the presence of large outliers, Model 2’s
predictions move in the right direction, which makes it the preferred choice when judging predictions using
RMSE. However, when all errors receive equal weight (MAE), Model 1 is the better choice. There is no
discrepancy in these results, just different value judgments at play. In most cases, RMSE and MAE will
rank models in the same order, but sometimes, differences manifest themselves as in this case—your value
judgments matter.

Table 9.3: RMSE and MAE estimates for Models 1 and 2.

Model R2 MAE RMSE

1 0.115 0.95 1.37
2 0.266 1.047 1.321

Pro Tips. You can only compare within a loss function, not between—do not compare an L2 to an L1.
Additionally, the values of the loss function do not give any indication of uncertainty. Our two model
examples provide a point estimate on the error, but what is the consistency of error? Model 2 is slightly
better than Model 1 in terms of RMSE, but what if we were to draw another sample of nighttime lights
data from a different time period—would we get the same results? Uncertainty matters and model validation
designs can help.

180 CHAPTER 9. THREE QUANTITATIVE PERSPECTIVES

Finally, while we only covered the L1 and L2 loss functions there are many other options to choose from
(e.g., Huber Loss, Mean Absolute Percentage Error, etc.). In some cases, we may want to use asymmetric
loss functions—the cost of under-predicting the target may be costlier than over-predicting. Choosing the
right loss function reflects your policy objectives and managing your risks.

9.3.2 Model validation
Earlier in this chapter, we introduced a Train-Test design to simulate the conditions of applying the data in
the wild. This simple design, however, only gives us a single opportunity to check if a model performs well.
When two or more models have losses that are close to one another, it could very well be that one model is
better than another by chance—that does not inspire confidence in the process of prediction.

To lend confidence to our choice of model, we need to create the possibility to have multiple testing opportu-
nities. Cross-validation (CV) makes this possible.10 As illustrated in Figure 9.9, k-folds CV splits a sample
into k-number of randomly drawn, non-overlapping partitions (in the diagram, there are k = 10 partitions).
The objective is to produce a prediction for each fold k using the other k − 1 folds, thus each model under
consideration is trained k times and produces k sets of predictions. While this sounds complex, it is actu-
ally a brilliant approach to see how stable our predictions are. Loss functions can be calculated for each
partition, then estimate the average loss and its standard deviation to show the consistency of each model’s
performance.

As we increase k, we increase the amount of power that is available for a model to learn and reduce the
variance of the error estimate. But the trade-off of higher values of k is the computational expensive as
more models need to be trained. A special case of k-folds CV sets k = n, which means each iteration of the
CV process will leave out one observation. This Leave-One-Out (LOO) trains n models, providing the best
possible estimate of a model’s performance but can be costly to do.

Time series data are another special case k-folds CV can be implemented by partitioning k equal-length
segments of the time series to preserve the order of observations. Models can be trained on k − 1 segments,
then predict the kth until each segment is predicted out-of-sample.

Figure 9.9: The flow of k-folds CV. A sample is randomly partitioned into k folds. Models are trained
excluding one fold at a time, then predict on the fold that was held out. Repeat until all folds are predicted
once.

CV in practice. Model validation is an essential part of any prediction project, but it may seem unwieldy
due to the large number of repetitive steps required. In practice, implementing a basic CV process requires
only a few lines of code. Below, we apply 50-fold CV using the Boston Census tract-level housing market
dataset from Harrison and Rubinfeld (1978). To start, we load the dataset, specify k = 50 and create a vector
split_index that randomly assigns each observation to one of k groups.

10Note that CV takes on different meanings in sub-domains in data science. In deep learning, for example, CV refers to
Computer Vision.

9.3. PREDICTION 181

Load MASS dataset for Boston data
pacman::p_load(MASS)

Set value of k and create random assignment vector
set.seed(1000)
k <- 50
split_index <- sample(1:50, nrow(Boston), replace = TRUE)

Using the CV framework, we test four simple regression models to check which variables carry the most
predictive power:

W = β0 + β1Rooms + β2Crime + β3NOX + ε

W = β0 + β1Crime + β2NOX + ε

W = β0 + β1Rooms + β2NOX + ε

W = β0 + β1Rooms + β2Crime + ε

For each value of k ∈ {1, .., 50}, a train sample and test sample is partitioned based on split_index and a
regression is trained for each specification. The errors function is used to construct the CV results for each
partition, appending the loss estimates to the cv_results data frame. At the end of k = 50 iterations, the
table contains four sets of 50 loss estimates. For small datasets, this process occurs nearly instantaneously,
but larger datasets and complex models may require some patience.
Loop through
cv_results <- data.frame()

for(i in 1:k){
Split sample
train <- Boston[split_index != i,]
test <- Boston[split_index == i,]

Train a pair of models
mod_all <- lm(medv ~ rm + crim + nox, train)
mod_no_rm <- lm(medv ~ crim + nox, train)
mod_no_nox <- lm(medv ~ rm + crim, train)
mod_no_crim <- lm(medv ~ rm + nox, train)

Store results
cv_results <- rbind(cv_results,

cbind(mod = "All", errors(predict(mod_all, test), test$medv)),
cbind(mod = "No Room", errors(predict(mod_no_rm, test), test$medv)),
cbind(mod = "No NOX", errors(predict(mod_no_nox, test), test$medv)),
cbind(mod = "No Crime", errors(predict(mod_no_crim, test), test$medv)))

}

Let’s take a look at the RMSE estimates using kernel density plots in Figure 9.10. Three of the four distri-
butions follow an identical bell curve pattern centered at RMSE = 5 with a long right tail, while the peak
of the “No Room” model is to the right of the other distributions. These patterns provide us a few insights
that we would not have seen in a standard Train-Test design. First, the Room variable is the most important
factor—it carries the most predictive power while NOX and Crime have modest predictive power. Second,
CV illustrates that there is a fair degree of variability from one model to the next. The All model has a
mean RMSE = 5.59 with a standard deviation of 2.5—the predictions are quite variable. We can conclude
that while the provides original study found a marginal cost associated with NOX, the CV process shows
that the variable holds limited power in predicting prices.

182 CHAPTER 9. THREE QUANTITATIVE PERSPECTIVES

As we will see in subsequent chapters, many R packages build in CV designs to simplify the problem of
choosing the best possible model.
Load package
pacman::p_load(ggridges, ggplot2)

Graph densities
ggplot(cv_results) +

geom_density_ridges(aes(x = rmse, y = factor(mod)),
fill = "#0070C0", colour = "white", scale = 2, alpha = 0.9) +

xlab("RMSE") + ylab("Model") + theme_bw()

All

No Crime

No NOX

No Room

0 5 10 15
RMSE

M
od

el

Figure 9.10: Kernel diagram of RMSE distributions by regression specification.

9.4 Beyond this chapter
While the three quantitative perspectives should be used in concert to extract the most value from data,
many organizations will typically rely on one more than others. This reliance stems from a focus on what
is necessary to accomplish their stated mission. For example, macroeconomic researchers use descriptive
analysis to tell the story of the economy while their microeconomics counterparts tend to study treatment
effects through natural experiments. Budget officers often monitor spending through descriptive measures;
using these they develop forecasts of future financial performance to inform spending adjustments. Tax
collection offices have been known to apply predictive techniques to identify potential cases of tax evasion.

There are occasions when the opportunity presents itself to leverage all three perspectives. One such oppor-
tunity arises when a government agency must balance scarce resources to accomplish a goal. Imagine a public
health agency that is tasked with reducing the incidence of foodborne illness in restaurants. If the agency
is understaffed, its inspectors might only be able to conduct inspections at restaurants every few years.
Descriptive analysis can inform hypotheses and identify which covariates are indicative of food poisoning.
An exploratory data analysis can also help assess if data quality is sufficient to enable data-driven interven-
tions. If the signal quality is adequate, data scientists can develop predictive models which can identify the
restaurants that should be inspected. While model accuracy may appear promising, the policy impact can
only be measured through a randomized control trial, randomly assigning some health inspectors to visit a
random sample of restaurants while assigning others to a list constructed through predictive means. This
workflow is common in agencies that conduct field operations and risk management activities.

Another opportunity arises in policy evaluation settings that relies on causal inference using non-experimental
data. Recall the role of a counterfactual in causal inference—a group of observations that serves as a reference
point. In some cases, a natural counterfactual does not exist, requiring data scientists to simulate a reference

9.4. BEYOND THIS CHAPTER 183

group through prediction. For example, an interrupted time series design can quantify an observed treatment
effect in time series data. As a reliable counterfactual might not be available, time series models are trained
on pre-treatment data, then produce a forecast on the post-treatment period as if the treatment had not
occurred. Thus, the counterfactual is a projection of what if the past paradigm had continued, placing
significant weight on the quality of the counterfactual—how well the predictive model can convincingly
mimic pre-treatment conditions. This is just one of many quasi-experimental techniques that benefit from
predictive methods. As predictive analysis becomes more common, policy researchers and program evaluators
will likely incorporate all three perspectives in their research activities.

There is always room for innovation in public policy. By mapping an agency’s demand for insights to these
perspectives, we can not only baseline the current state of practice but also identify ways that scientific
insights can drive outcomes we observe every day. Whether it is traffic patterns, night light usage, bitcoin
prices, or any other manner of the phenomenon, the goal is to draw some axiomatic belief about how the
world works. We can then leverage these mechanisms and beliefs into making better predictions about the
future which fuel smarter, more objective policy making.

Chapter 10

Prediction

10.1 The role of algorithms
Every day, we rely on high-frequency and high-resolution data to make even the smallest of decisions, and we
do so without realizing the role of predictive models. The power of machine learning (ML) lies in its ability
to predict, translating raw information of all kinds (e.g., imagery, sound, tabular) into useful information
on which decision can be made. The benefits of these advancements have been principally seen in the tech
sector, but are increasingly being adopted in the service of the public good. Microsoft, for example, has
shown that machine learning algorithms can perform a mapping task that would normally require years for a
team of humans to perform. Computer scientists trained a pair of algorithms to identify building footprints.
One set of neural network algorithms were trained on five million satellite imagery tiles to identify pixels
that belong to buildings, then an additional filter converted pixels into building polygons. (Microsoft 2018)
The methodology achieved a precision of 99.3% and recall of 93.5%—accurate enough that one may have
confidence that a computer can do the mapping task without human intervention. When set loose on satellite
imagery for the entirety of the United States, the result was the first comprehensive national building database
containing 125,192,184 building footprints (Wallace, Watkins, and Schwartz 2018). A complete inventory of
the state of the built environment has never been available at this level of resolution and coverage, enabling
use cases from emergency services to city planning to demographic research.

The Microsoft project illustrates the productivity gains made possible through automation, but ML can also
perform hard analytical tasks. The ride share company Uber, for example, optimizes their demand load for
their services (e.g., enough drivers to meet) through a forecasting model to anticipate extreme events such as
sports matches and holidays. To do so at a global scale with hyper-local detail, Uber data scientists trained
a Long Short-Term Memory (LSTM) algorithm—a kind of artificial neural network—to learn the trends,
seasonality, and quirks. The forecast model in turn provides the advanced intelligence needed to help Uber
make smart business decisions (Laptev, Smyl, and Santhosh Shanmugam 2017).

The public sector has also adopted predictive strategies to improve their services. In any given month, the
Bureau of Economic Analysis (BEA) estimates the Gross Domestic Product (GDP)—a mosaic of data and
forecasts that gage the performance of the economy. Some key datasets, like consumption of services, are not
available in the preliminary GDP estimate, thus analysts produce projections until the “gold copy” of the
data is available a short time later. While projections are easy to produce, accurate projections are elusive. If
a projection is even marginally incorrect, economic estimates may need to be revised. In recent years, BEA
has experimented with machine learning algorithms, such as Random Forests and Regularized Regression,
to sift through thousands of economic variables so that projections are as accurate as possible, reducing
revisions by billions of dollars (Chen et al. 2019). These predictive gains, in turn, can mitigate unnecessary
market responses to revisions.

Different flavors of ML. This chapter is devoted to supervised learning algorithms—machine learning
designed to predict and mimic a target variable as closely as possible. Some algorithms are designed with

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_10

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_10

186 CHAPTER 10. PREDICTION

structured, tabular data in mind. Others are better for unstructured information like images and sound,
while others may occupy a general-purpose role. They trade-off interpretability for raw predictive accuracy.
In recent memory, computer scientists have been working hard to make the black box qualities of machine
learning more transparent. As we will see later in the chapter, we can look under the hood for some algorithms
to understand which variables they fixate on. If a prediction can mimic a phenomenon, prediction makes it
possible for us to make decisions with confidence and precision.

What exactly do we mean by focusing on accuracy? Let’s take a simple two-class problem as illustrated in
Figure 10.1: the decision boundary could be linear, non-linear, or discontinuous. Social scientists and policy
analysts tend toward logistic regression—it is a well-established part of the policy tradition. While it is the
champion of parameter estimation, logistic regression is a lossy choice for non-linear, complex patterns as
it has trouble mimicking the patterns in the data. Non-parametric techniques, in contrast, are far more
flexible. k-nearest neighbors k-NN, for example, performs classification for an individual point by borrowing
information from other nearby records with known labels. Decision tree learning such as Classification and
Regression Trees (CART) and Random Forest learn patterns by subdividing a sample into more homogeneous
regions by finding thresholds among the input variables.

Logistic Regression

Li
ne

ar

KNN Decision Tree Random Forest

N
on

−L
in

ea
r

D
is

co
nt

in
uo

us

Figure 10.1: Linear, Non-Linear, and Discontinuous Classification Problems.

There are countless types of machine learning algorithms that are part of the modern data science toolbox.
In this chapter, we explore a few of these methods, focusing on traditional machine learning methods and
their potential role in informing public and social problems. We begin the chapter with the idea of a data
science pipeline, treating prediction as an engineering problem. We then introduce three common machine
learning techniques (k-NN, CART, and Random Forest) that are well suited for the typical tabular data
and use cases in the policy space. The state of the art has advanced greatly beyond these basic techniques.
To close the chapter, we conduct a high-level survey of advanced methods that are well suited for emerging
types of data.

10.2. DATA SCIENCE PIPELINES 187

10.2 Data science pipelines
Prior to this chapter, we have covered the essential tasks that underlie data science, such as data cleansing,
processing, visualization, and modeling. But these are not tasks that are exclusive to data science. Social and
natural scientists, for example, incorporate these skills in the pursuit of an answer to a research question.
Because the objective is to answer a specific question, analyses are coded in an ad hoc manner—resembling
as a long series of commands with hardcoded assumptions. The data might also be cleaned by hand, making
it a challenge to re-apply the same code to other problems or at least quite time-consuming. It goes without
saying that ad hoc code does not scale. And if code is not scalable, the intricate detail of an analysis needs
to be simplified into less precise rules of thumb for people to use—data can only inform strategy.

Data science, in contrast, brings together research-grade insights with engineering software programs to
achieve scale. Rather than answering a specific question once, data science products are designed to con-
tinuously answer questions and adapt to the problem space. Raw data can be processed and manipulated.
Processed data feeds algorithms to learn patterns. The trained model can score data feeds that in turn sup-
port decisions and actions. Each of these steps can be standardized and fit together like a series of modules or
interchangeable parts, like an assembly line for transforming data into insight. This is the basic idea behind
a data science pipeline—standardize the processing steps so that data scientists can focus on the use case.
Many industries have adopted the pipeline approach, allowing them to move beyond data-informed strat-
egy to data-enable tactics. Ad hoc tasks are standardized, code is simplified, and development of products
becomes far faster to iterate than it might have once been.

Computer scientists have modularized the core tasks of data science by creating programming frameworks.
Apache Spark, for example, was designed to help data scientists construct pipelines with minimal code and
scale to large streaming data source streams. For more general use, the Scikit-learn library in the Python
programming language is designed with data science pipelines in mind. The R-equivalent is the caret package,
which interfaces with dozens of machine learning and data processing packages.

In this chapter, we focus on the caret package to train prediction algorithms. While we acknowledge the
package is built with expansive functionality1, we focus on seven essential functions that allow this single
package interface with hundreds of machine learning algorithms with only a few lines of code (see Figure
10.2).

Figure 10.2: A simplified data science pipeline and associated functions.

The preProcess function allows you to dictate the types of data processing routines that should be applied
to the data, populating the metadata object that instructs caret what to do. The library can handle basic
processing routines such as variable standardization (e.g., mean centered and normalized by the standard
deviation), missing value imputation (e.g., k-NN), and dimensionality reduction (e.g., “PCA”). Thus, you still
will need to master more advanced processing skills such as working with text and matching. One benefit
of using preProcess is that it records the processing steps under which a model will be trained. The mean
used in mean-centering, for instance, needs to be retained so that new test samples can be adjusted using the

1See Kuhn and Johnson (2013) for in-depth treatment on caret.

188 CHAPTER 10. PREDICTION

same conditions as were used to create the training sample. Without capturing this essential information,
the prediction scores for new data samples will not perform as expected.

To illustrate its use, preProcess is applied to a hypothetical dataset wages. We specify four methods: mean-
centering (“center”), scaling by standard deviation (“scale”), imputation of missing values (“knnImpute”),
then dimensionality reduction (“PCA”). The output is stored in the process_obj.

Set up processing object
process_obj <- preProcess(wages,

method = c("center", "scale", "knnImpute", "PCA"))

Next, we might consider to think through how to validate our model—a critical step for determining if the
algorithm will perform out-of-sample. Rather than implementing model validation through a set of complex
nested loops, we can instead use the trainControl function. caret is pre-loaded with useful model validation
patterns such as simple k-folds cross-validation (method = "cv"), more complex approaches like repeated
cross-validation (method = "repeatedcv"), or the computationally exhaustive Leave-One-Out CV (method
= "LOOCV"). Like preProcess, the trainControl function produces a metadata object that tells caret how
to set up the training data for model validation.

Example 1: 10 iterations of repeated CV with 20-folds each
val_control <- trainControl(method = "repeatedcv", number = 20, repeats = 10)

Example 2: Plain 10-folds cross validation
val_control <- trainControl(method = "cv", number = 10)

With the processing and model validation ready, we now can train a model using:

train(formula, data, method, trControl, preProcess, ...)

Where:

• formula is a formula object (e.g., “y ~ x1 + x2”). For classification problems, the target
variable should be a factor.

• data is a data frame of training data.
• preProcess is a pre-processing object. Alternatively, you can feed a string vector with names

of transformations (e.g., knnImpute, scale, etc.).
• trControl sets the model validation approach and requires a trainControl object.
• method is the type of algorithm, usually taking the name of a package such as kknn and
ranger. For a complete list of algorithms available, visit the caret package’s Github repos-
itory.2

ML algorithms often have a set of hyperparameters that need to be tuned in order to optimize for accuracy
and generalizability. The number of parameter sets that need to be tune can easily balloon, requiring complex
code to achieve a strong result. caret makes the process simple by performing an automated grid search—a
systematic search for the best parameter set subject to a selected loss function. You can control the grid
search by specifying one of the two following arguments:

• tuneLength is an integer that indicates how granular the hyperparameter grid search should
be. Specifying tuneLength implies that you trust that caret is searching the right range of
values within the hyperparameters, but you would like to control how detailed of a search
should be conducted. For example, setting tuneLength = 10 instructs caret to test 10
scenarios while tuneLength = 1000 tests 1000 scenarios.

2Visit https://github.com/topepo/caret/tree/master/models/files.

https://github.com/topepo/caret/tree/master/models/files

10.3. K-NEAREST NEIGHBORS (K-NN) 189

• tuneGrid, in contrast, allows you to explicitly dictate the scenarios to be tested. caret
expects a list of scenarios in the form of a data frame. Each column in the data frame is
a hyperparameter specific to the algorithm being tuned, requiring the user to review the
instructions for each method.

When we bring together these three functions to tune an algorithm (we use Random Forest from the ranger
package as an example below), we can condense a large amount of code into only a few arguments:
mod_obj <- train(wage ~ .,

data = wages,
method = "ranger",
preProcess = c("center", "scale", "knnImpute", "PCA"),
trControl = trainControl(method = "cv", number = 10),
tuneGrid = expand.grid(mtry = 1:10,

splitrule = "variance",
min.node.size = 2))

The output of the train function is saved to an object mod_obj, which is a sophisticated piece of scaffolding
that holds an extraordinary amount of information. Like any other model object, it stores the trained algo-
rithm and model diagnostics. We can retrieve all of the cross-validation results by calling mod_obj$results
or pull the best parameters by calling mod_obj$bestTune. We can also take a peek under the hood at the
variable importance by passing the model object to the VarImp function:
varImp(mod_obj)

But the most impressive functionality is that this one model object can shepherd data through a full data
science pipeline. It holds the instructions not only for the trained algorithm but also all the pre-processing
steps that prepare data for use. To apply the predictions to a new wage dataset new_data, we can call
predict and caret takes care of all the data processing in the background.
predicted_values <- predict(mod_obj, new_data)

Now that the algorithm is up and running, we can evaluate the model’s performance on out-of-sample
data. If the labels (actual_values) are available, we can compare the performance of model predictions
(predicted_values) using two functions. postResample computes performance metrics (e.g., Root Mean
Squared Error (RMSE), R-squared, and Mean Absolute Error (MAE)) for continuous outcomes, while
confusionMatrix computes a comprehensive set of confusion matrix statistics for discrete outcomes.

Predicted accuracy for regressions
postResample(predicted_values, actual_values)

Confusion matrix for classification models
confusionMatrix(predicted_values, actual_values)

Mastering these seven functions is enough to get you started with building data science pipelines. But user
beware. The ease of constructing pipelines also makes it much easier to build models that do the wrong
thing very well. Take the time to learn the inner workings of each algorithm that before actually applying
it. Ultimately, it is the data scientist’s responsibility to ensure that prediction algorithms are built and used
appropriately. With the foundational mechanics laid down, we will now explore a few ML algorithms that
often see action.

10.3 K-Nearest Neighbors (k-NN)
Let’s consider the following scenario. You are driving down a country road without cell signal—just like the
pre-smartphone era—and realize you are lost. There is an absence of signage, so you decide to stop the first

190 CHAPTER 10. PREDICTION

person you see to ask where you are and get some directions. To double-check, you might ask for a second
and third opinion from the next closest people. At some point, the amount of information collected is enough
and you have an idea of where you are. In other words, people who are closer might have some knowledge
of your whereabouts

k-NNs exploits this idea that predictions can be made by asking k-number of neighboring records for their
opinions. Neighbors are determined based on distance based on treating input variables as a set of coordinates.
k-NN is quite different from other algorithms because it is instance-based—it does not learn or retain patterns
but produces predictions by comparing against an inventory of records (the training data). Such a simple
idea has allowed k-NN to serve as the spackle of prediction models.3 It is the method of choice for filling
holes (imputing) in data while retaining the “shape” of data to which it is applied. In fact, it is also used by
caret to impute missing values.

10.3.1 Under the hood
As illustrated in Figure 10.3, we can produce a prediction for each record i by following a simple iterative
process.

Before starting, the analyst must set two parameters: k and kernel. The value of k determines the number of
surrounding neighbors that factor into prediction yi. The kernel is the structure under which neighbors are
weighted. The true value of k is not known—it is a hyperparameter optimized through tuning. Nonetheless,
for any set of hyperparameters, we hold the values fixed as we train the algorithm.

For each record i in the test sample, we follow these steps:

1. Calculate distance. To identify the closest training records around record i, calculate the
distance dij from i to each point j in the training sample. Distance most commonly takes the
form of Euclidean distance (

√∑n
i=1(xi − x0)2), which is appropriate with continuous values. For

cases in which the underlying data are discrete, Manhattan distance (
√∑n

i=1 |xi − x0|) is more
appropriate.

2. Vote! The prediction ŷi is a vote of the k-nearest points around point i, but it is handled
slightly different for each classification and regression problems. In classification, k-NN returns
the proportion of neighbors that belong to each of class c, which is treated like a probability
of c. The class prediction for each record i is done through majority voting in which the most
prevalent class wins. In regression contexts, the simplest prediction of ŷi is simply the average of
the k-nearest neighbors.

There are various flavors of voting. Plain vanilla k-NN uses what is known as a rectangular kernel in which
all neighbors receive the same weight. We could also use a decay function to place more emphasis on closer
neighbors such as in the case of inverse distance:

ŷi =

∑k
i=1(yi

dp
i
)

∑k
i=1(1

dp
i
)

where dp
i is the distance from the ith neighbor to the pth power. By increasing p, we place more emphasis on

closer observations. The Gaussian kernel and Tukey Bi-Weight are alternative weighting schemes to impose
distance decay.

Because of its simplicity, k-NN needs data to be treated carefully, in particularly through variable normal-
ization and tuning.

3In the United States, ‘spackle’ is a type of plaster used to fill holes in walls.

10.3. K-NEAREST NEIGHBORS (K-NN) 191

(A) Set up (B) Calculate distance (C) Vote using k−neighbors

Figure 10.3: The process of training a k-NN algorithm.

Normalization. Because each input variable’s values are treated like coordinates, the algorithm treats all
inputs equal influence on the distance calculation. To ensure equal treatment means to normalize variables.
For example, if an input variable x1 has a range from 1 to 10,000 and x2 ranges from 0.1 to 0.3, a k-NN will
likely rely more on one variable than another. To normalize the variable set, we can calculate the z-scores
for each xk:

scaled = xk − μxk

σxk

where the transformed variable is mean centered with unit variance. This normalization approach only applies
to continuous variables, however.

What if the inputs were of mixed data types? It turns out that there are many normalization strategies, but
the common theme is to convert inputs into the same units. Real numbers can be converted into bins of a
categorical variable in order to be used with other discrete variables, then a Manhattan distance is applied
to identify neighbors. For example, an age variable could be subdivided into discrete age bins (e.g., 18–24,
25–29, etc.) and the distance between each sequential bin is 1. But there is some flexibility in how bins are
defined. Age does not necessarily need to be defined as 18 to 24 for the lowest bin, but instead could be 18
to any other arbitrary threshold. In government, there are often standard age classification and matching
bins to common classes allows for comparing across analyses. The bottom line is normalization is key.

Tuning. The performance of k-NNs is also sensitive to tuning. While we do not know the true value of k or
the best kernel, we can conduct a grid search using k-folds cross-validation to hone in on the best parameter
set. But given that there may be as many values of k as the sample size n, the goal should be to grid search
as efficiently as possible.

One could search from k = 1 to k =
√

n in intervals of one’s choosing (e.g., steps of 1, 10, 100, etc.), keeping
track of how each k performs in terms of a loss function (e.g., TPR, FPR, F1-statistic). By setting a coarse
search grid, we can approximate the accuracy curve for values of k, then search more finely where accuracy
looks most promising. But if time is not of the essence, then an exhaustive search at finer increments may
be worth the wait.

To illustrate this process, we have drawn a simple random sample of USDA CropScape land cover data (W.
Han 2019), a useful dataset for monitoring crops such as corn (yellow) and soybeans (green). As shown in
Figure 10.4, while the CropScape data has full coverage in US farmlands, we simulate a survey sample that
only covers 10% of land. Using what we know, we can impute the other 90% of the farmland using the k-NN
algorithm. In the imputations below, we compare values of k at 1, 5, 10, and 100. The sensitivity to k is
apparent as the value increases. The predicted location of cornfields increasingly creeps into areas where soy
would be expected. Indeed, the accuracy trade-offs are quite clear.

Other considerations. Despite its simplicity, k-NNs can be computationally taxing due to the large number
of pairwise calculations required between training and test samples. In other words, as the sample grows,

192 CHAPTER 10. PREDICTION

Farmland (Actual) Farmland (10% sample) k = 1: TPR = 68.82, FPR = 1.53

k = 5: TPR = 68.47, FPR = 2.29 k = 10: TPR = 68.17, FPR = 2.68 k = 25: TPR = 64.17, FPR = 3.09

Figure 10.4: Comparison of prediction accuracies for various values of k.

it requires more time to process. Furthermore, as more input variables are incorporated, we also can face
challenges with prediction quality as each variable is considered equally. This means that both signal-packed
and noisy variables have equal chance of influencing the prediction, thus variable selection matters quite a
bit.

In practice, k-NNs are best suited when datasets are smaller and contain fewer variables. They are also well
suited when data is recorded along a grid (e.g., spatial, sound, imagery) and there is a lack of a theory of that
guides how the inputs relate to the target or prediction. Furthermore, k-NNs are excellent when patterns are
non-linear and discontinuous. But like many algorithms that we will encounter, k-NNs lack a clear avenue
to interpretation. Most commonly, we will see k-NNs applied to imputation problems when there is not an
obvious pattern behind the missing values (Table 10.1).

Table 10.1: The pros and cons of k-NN.

Useful Properties Challenges

Efficient and timely when there are relatively few
variables.

Mixed data types require to convert all data into
dummy matrices

Effective in capturing patterns in cases where
proximity matters.

Does not offer an interpretation.

Common choice for imputing missing values.

10.3.2 DIY: Predicting the extent of storm damage
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch10-knn.Rmd.

Perhaps one of the most important but under-appreciated responsibilities of city government is to take care
of its trees. One might not even notice that trees are well cared for, but they do make their presence known

https://github.com/DataScienceForPublicPolicy/diys

10.3. K-NEAREST NEIGHBORS (K-NN) 193

from time to time. When a branch or entire tree falls, it can inflict property damage, bodily harm, and
traffic disruptions. In some cities, like NYC, a resident can call the City’s services hotline known as 311
to request the tree be removed, then the Parks Department is dispatched. During large storms, the local
government’s role is even more important, especially after Hurricane Sandy left its mark on New York City’s
urban landscape.

Let’s suppose you are a city official tasked with triaging tree removal after a hurricane. The problem after
storms is the chaos—there’s only partial information available on the current situation. Some parts of a city
have phone access and can still make requests for help, whether it is for downed trees or other localized
problems. Other areas may not be as lucky. Thus, the disposition of most areas is largely unknown, which
might lead first responders to support areas where calls for help are able to reach them and overlook more
heavily impacted areas. In short, responders need to know where and what the problems are but not how
or why things turned out the way they did—at least not during times of crisis. In this DIY, we rely on
k-NN to impute a fuller picture of downed trees after Hurricane Sandy. Using 311 data available from the
day Hurricane Sandy hit NYC, we impute downed tree status for large portions of the city, comparing the
predictions with what is learned in the 7 days following the storm. We can fill in so that emergency responders
can make more informed aid allocations.

Prepping the data. Rather than responding to individual calls for help when impacts are widespread,
it may be more effective to allocate resources by grid cells. For this DIY, we have pre-processed NYC 311
call records into a grid of 1000ft × 1000ft cells for a total of n = 7513 cells in all. The data contain only
a few variables including an id, a county label boro, geographic coordinates of the grid centroid4, and a
set of binary variables indicating if at least one downed tree was reported on the day of Hurricane Sandy
(tree.sandy) or in the following seven days (tree.next7). The two binary variables were developed under
the assumption that residents of a neighborhood would report downed trees if they were spotted. If a call were
made, then we could flag a neighborhood as one that experienced tree troubles. Alternatively, if complaints
from a neighborhood are devoid of tree-related issues, we can assume that the area was unaffected.

For simplicity, let’s focus on the two largest and populous boroughs (boro) that share the same land mass,
Brooklyn (BK) and Queens (QN), that comprise 59.6% of the city or n = 4477 grid cells. We only have 311
information for 43.5% of grid cells at the time of the hurricane, leaving the tree status unknown for 56.5% of
the region. If we were at the emergency command center, we have two options. On the one hand, we could
wait for data to be collected, but it will likely take some time to gather complete information. Alternatively,
we could apply a simple imputation model to approximate the current state of affairs so interim decisions
can be made while more information is gathered.
Load data
nyc <- read.csv("data/sandy_trees.csv")

Extract Queens and Brooklyn
pacman::p_load(dplyr)
nyc <- filter(nyc, boro %in% c("BK", "QN"))

Train. Our training objective is to anticipate where downed trees will be reported over the next seven
days by training a model on the first day’s reports (target variable tree.sandy). Our main set of driving
factors are latitude and longitude, which means the predictions are a function of geographic proximity. A
quick tabulation shows that 79.7% (n = 1550) of grid cells in the training set have at least one downed tree
reported – evidence that the storm had widespread impacts. To fill in the remaining 20.3%, we supply a data
frame of all grid cells in Brooklyn and Queens that can be scored by the k-NN.
Extract the training and test samples
training <- subset(nyc, !is.na(tree.sandy),

select = c("ycoord", "xcoord", "tree.sandy"))
testing <- subset(nyc,

select = c("ycoord", "xcoord", "tree.next7"))

4If latitude and longitude were recorded in decimal degrees, the value of one degree is dependent on where one is on the
globe. When working in local regions, state plane feet allows each unit of a coordinate to be equal within the region.

194 CHAPTER 10. PREDICTION

Split out
table(training$tree.sandy)

##
0 1
396 1550

With the data ready, we use caret to interface with the kknn package, which has the ability to handle both
classification and regression problems as well as conduct grid searching to identify the optimal combination
of kernel and number of nearest neighbors K.
pacman::p_load(caret, kknn)

Tuning models. Within caret, we specify the algorithm using the method argument in the train function
(method = "kknn"). We also have the option to provide caret with a list of tuning scenarios, noting that
this requires some knowledge of how the kknn package was designed. Below are three key parameters that
need to be specified:

• kmax is the maximum number of neighbors to be tested.
• kernel is a string vector indicating the type of distance weighting (e.g., rectangular is unweighted,

biweight places more weight toward closer observations, gaussian imposes a normal distribution on
distance, inv is inverse distance).

• distance is a numerical value indicating the type of Minkowski distance. (e.g., 1 = binary, 2 =
Euclidean).

In this example, we consider 200 scenarios that are constructed by applying expand.grid to find all combi-
nations of the parameter set.
scenarios <- expand.grid(kmax = 100,

distance = 1,
kernel = c("rectangular", "inv"))

Each scenario is then evaluated through tenfold cross-validation. The train command does much of the hard
work, running the k-NN algorithm 2000 times (10 cross-validation models for each k and kernel combination),
then returns the optimal parameters that minimize classification error. The results are stored in the fit_knn
object.
Set seed for replicability, run with 10-folds cross validation
set.seed(100)
val_control <- trainControl(method = "cv", number = 10)

Train model
fit_knn <- train(factor(tree.sandy) ~ .,

data = training,
preProcess = c("center","scale"),
trControl = val_control,
method = "kknn",
tuneGrid = scenarios)

Evaluate performance. We extract the optimal tuning parameters by calling summary(fit_knn), which
indicates that a rectangular kernel with k = 20 neighbors achieves a misclassification rate of under just 20%.
Is this sufficient for deployment?
Score, predict probabilities
testing$prob <- predict(fit_knn, testing, type = "prob")[,2]

testing$yhat <- ifelse(testing$prob >= 0.5, 1, 0)

10.4. TREE-BASED LEARNING 195

(A) Calls during the storm (B) Predicted probabilities (C) Actual next 7 days

Figure 10.5: Comparison of actual and predicted areas with reported downed trees. Red indicates at least
one tree was reported in a given 1000 x 1000 square-mile area.

Fill NAs in test set actuals
testing$tree.next7[is.na(testing$tree.next7)] <- 0

A closer visual inspection of the predictions in Figure 10.5 shows that the k-NNs predicted probabilities can
adequately approximate the pattern of downed trees that will eventually be reported over the next 7 days
after the storm. The algorithm appears to be relatively effective in detecting both the unaffected (blue) and
affected (orange) with a blue-orange gradient where the evidence is less clear. These probabilities can come
in handy when prioritizing aid—send help to where you are more certain it is needed.

In fact, if emergency responders prioritized visits to higher probability areas, we would likely achieve high
hit rates in the early days of the emergency response (e.g., finding downed trees when a visit is conducted)—
-nearly 80% at its peak, then gradually declining with lower probabilities. Thus, while probabilities will not
perfectly predict which areas have been impacted, they would allow responders to first focus on worse off
areas first.

Despite the promising result, we should be cognizant that k-NN is just one of many prediction algorithms.
We naturally should ask: Is there a better algorithm?

10.4 Tree-based learning
One of the core challenges of working with data in public sector is the quantitative tradition—most methods
are regression-based as the goal has been to estimate and infer relationships. Thus, if a social scientist
approached the downed tree problem, it is likely that a logistic regression would be the model of choice.
However, prediction problems prioritize accuracy first. We, of course, now know that such a model would
draw a linear decision boundary that would invariably ignore the isolated pockets of activity. Furthermore,
the coefficients in this case would not be meaningful—downed trees are not distributed monotonically along
latitude and longitude.

In contrast, k-NNs can detect pockets of activity. However, they are memoryless techniques—they do not
learn patterns, facilitate inference, or identify important variables.

Decision tree learning is a promising alternative that learns the structure present in data while allowing
analysts to interpret patterns.

Tree learning recursively splits a sample into smaller, more homogeneous partitions so that affected areas are
separated from unaffected areas. When fully grown, a decision tree resembles an inverted tree (see Figure
10.6). The root node (the full sample) is first split at a threshold along an input variable, producing a pair of
child nodes. The optimal threshold is found by an attribute test, which compares many candidate thresholds
in search of one that maximizes the homogeneity within the child nodes. In our example, 80% of the root
node is comprised of areas with downed trees. Each time an attribute test splits a node, we see a pair of

196 CHAPTER 10. PREDICTION

xcoord < 50

ycoord >= 32

xcoord < 35

xcoord >= 21

xcoord < 30

ycoord >= 73

xcoord < 15

ycoord < 52

ycoord < 11

xcoord >= 32

ycoord < 15

xcoord >= 58 ycoord < 42

xcoord < 84

ycoord < 87

ycoord >= 79

xcoord < 67

xcoord >= 54

ycoord < 83

0.8
100%

0.71
52%

0.66
28%

0.56
15%

0.52
10%

0.46
6%

0
0%

0.5
6%

0.61
4%

0.65
5%

0.48
2%

0.74
3%

0.76
13%

0.55
3%

0.83
10%

0.77
24%

0.54
5%

0.82
19%

0.67
4%

0.87
15%

0.89
48%

0.29
1%

0.12
1%

0.62
0%

0.91
47%

0.78
3%

0.92
43%

0.91
32%

0.89
28%

0.82
5%

0.58
2%

0.46
1%

0.091
1%

0.73
1%

1
0%

0.95
3%

0.91
23%

0.98
4%

0.96
11%

yes no

1

2

4

8

16

32

64 65 33

17

34 35

9

18 19

5

10

11

22 23

3

6

12 13

7

14

15

30

60

120

240

480

960 961 481 241 121 61 31

Figure 10.6: A grown decision tree made with the rpart.plot package.

child nodes that—when combined—have the same number of records as their parent node. The first split is
identified at a threshold (xcoord < 50). While the split is imperfect, each node has become slightly more
homogeneous: 71% of the child node below x < 50 is comprised of downed trees compared with 89% in the
other child node.

The algorithm will continue to recursively split the sample, concentrating more affected areas into some
nodes and unaffected areas into others. Notice the differences in complexity (number of splits) on the left
side of the tree compared with the right side—the splitting activity is more intense for some nodes than
others, indicating that the tree is able to identify small pockets of activity. A decision tree’s ability to mold
to the data makes it possible for it to exploit finer patterns and in turn capture details that a regression-based
method would otherwise overlook. As the tree continues to partition the sample into smaller child nodes, it
will stop growing according to pre-defined stopping criteria. Each node that is without child nodes is referred
to a leaf —it is the terminal node, the end of the line, where predictions are derived.

While the idea of tree learning may be unfamiliar to policy environments, it does have certain appealing
qualities that traditional methods lack. For one, recursive partitioning finds variable interactions, or an effect
on the target that is dependent on the product of two or more input variables. These interactions allow tree
learning to catch discontinuous and non-linear patterns in the data—an ability that would require substantial
effort in a linear regression framework. In addition, the search for the optimal split allows tree learning to
conduct automated variable selection that is not only robust to outliers but even useful when the number of
variables outnumbers the number of observations.

10.4.1 Classification and Regression Trees (CART)
The process of growing trees. Now that we have the gist of decision tree learning, let’s take a look at
how Classification and Regression Trees (CART) work under the hood. As laid out in Breiman et al. (1984),
the algorithm follows a three-step process:

1. Base Cases. Growing a tree can be computationally costly. To save time, tree learning
algorithms cleverly check for “base case” criteria that determine whether it is worth the
effort to grow a tree. In particular, base cases check if all values at the root node are of the
same class (or below a certain variance threshold), if input variables can achieve any useful
splits, among other conditions. When any base case is true, the algorithm will stop. More
often than not, your tree will not grow due to a lack of signal. While this can be frustrating,
knowing that the data does not lend itself to a prediction problem early on in a project

10.4. TREE-BASED LEARNING 197

saves one from the heartache of building a house of cards.

2. Recursive Partitioning. If base cases are are not detected, the algorithm proceeds with
growing a tree. An attribute tests is applied to each successive partition, which recursively
splits the sample into smaller, more homogeneous partitions. More on attribute tests later.

3. Stopping Criteria versus Pruning. All trees should stop growing at some point, but question
is when? One approach is to apply stopping criteria that prevent the tree from over-growing.
These criteria might include terminating the recursive splitting process if leaf nodes have
fewer records than a pre-specified threshold (e.g., do not split if n < 5), the nodes can no
longer become more homogeneous, etc. While these stopping criteria may sound reasonable,
premature termination can prevent the tree from reaching its full potential—it can bias
the predictions. Alternatively, a tree can be grown to its fullest, then pruned to an optimal
level—not too bare and not too shaggy. Since this involves reviewing the tree’s performance
to make tuning decisions, pruning is conducted on cross validated model performance to
avoid overfitting.

Once the tree is grown and pruned, predictions can be generated from the observations in the leaf nodes.
Predictions for continuous outcomes are the average of all J observations in leaf i (ŷi = 1

n

∑J
j=1 yj), whereas

predicted probabilities of discrete outcomes are calculated as the proportion of each class c in the leaf
(ŷic = 1

n

∑J
j=1(C = c)). When CART scores a new test sample, observations receive the average value of

for the leaf into which it fell. The leaf at the bottom right of Figure 10.6, for example, contains 11% of the
training sample, 96% of which have downed trees. When applied to out-of-sample records, any observation
that reaches that leaf is assigned a 96% probability of having a downed tree.

The leaf nodes also serve another purpose: to facilitate interpretation. Each leaf is defined as a set of binary
criteria, essentially if statements that define a profile. Returning to the bottom right leaf in Figure 10.6, we
can trace the path from the root node to the leaf defined by a nested set of binary criteria: ycoord ≥ 42 and
xcoord ≥ 84. When the tree is simple, the profile is easy to communicate—as simple as a checklist. However,
complex trees with many splits are far harder to communicate.

Attribute Tests. To understand attributes, let’s use a simple analogy. In order to extract metal from
mineral impurities, we smelt raw metal ore—or apply some process to separate the two materials. While
smelting iron ore applies heat, CART models apply attribute tests to smelt the data, splitting it into smaller
partitions with fewer impurities. Attribute tests work by drawing on a concept from information theory: the
optimal split yields the most information gain (IG). In other words, the optimal split produces two child
nodes that reduce impurity (I) by the largest margin— one child node with more metal, the other with other
materials. Mathematically, IG is defined as the difference between the impurity of a parent node (Iparent)
and the weighted impurity of the resulting child nodes:

IG = Iparent −
J∑

j=1

nj

N
Ij

The greater the IG value is, the more information is extracted from the split, resulting in purer child nodes.

What is impurity exactly? Impurity boils down to a set of metrics that characterize the information content
in a node (see Table 10.2). In classification, impurity is measured through either Gini Impurity or Entropy,
both of which are calculated from the proportion of records that belong to each of J classes in the target.
In practice, both have similar predictive performance although Gini Impurity is slightly faster to calculate.
Regression problems rely on Variance Reduction, prioritizing splits that minimize within-partition variance.

198 CHAPTER 10. PREDICTION

Table 10.2: Common measures used for decision tree learning attribute tests.

Measure Formula Description

Gini Impurity Gini Impurity =
∑k

i=1 pi(1 − pi)
∑k

i=1 p2i Commonly use in CART. The Gini Impu-
rity ranges from 0 to 1 − 1

k .
Entropy Entropy =

∑k
i=1 −pilog2(pi) Relied on in other decision tree learning

algorithms. Values range from 0 to 1
Variance V ariance =

∑n

i=1
(yi−ȳ)2

n Focus on reducing the spread in the target
within partitions.

To illustrate the power of impurity metrics, let’s revisit the downed trees example. To simplify the problem,
let’s suppose that a single latitudinal boundary line can adequately separate affected from unaffected areas.5
Which degree of latitude do we choose?

Table 10.3 presents two candidate boundaries. Split A is somewhere north and Split B is farther north
(North+). Each split results in two sub regions (North and Remainder) that are further subdivided into
affected areas (Downed trees) and unaffected areas (Untouched).

Table 10.3: Two sets of candidate splits.

Label A: North A: Remainder B: North+ B: Remainder

Downed Trees 10 3 9 4
Untouched 5 21 0 26

To evaluate which split is better, we calculate the Gini Gain—the IG value for Gini Impurity. Below, we
calculate the IG value for each proposed split (see below). Both calculations require the impurity of the root
node (Iregion) to capture the baseline information content in the data. Then, we obtain the Gini Gain for
a pair of candidate child nodes by subtracting their weighted impurity. The larger Gini Gain indicates the
split that offers the most information gained.

IGA = Iregion − nA,north
N

Inorth − nA,rem
N

IA,rem

IGB = Iregion − nB,north+
N

IB,north+ − nB,rem
N

IB,rem

As we step through each element of the calculation in Table 10.4, it becomes apparent that Split B is more
effective for isolating areas with downed trees, achieving an 100% hit rate in the North+ partition—a marked
improvement over Split A’s 66% hit rate in the North partition. Indeed, the IG calculation confirms that
Split B would yield twice as much information as Split A.

Interpretation. While you provide CART with a model specification, the algorithm will choose which of
those variables are useful for predicting the target—it conducts variable selection. This may raise concern
amongst policy staff: Is CART a black box? It is only a black box if we limit our definition of interpretability
to the traditions of linear regression. CART facilitates interpretation through variable importance (or feature
importance) that measure how much CART relies on each variable.

5A tree with a single split is called a decision stump.

10.4. TREE-BASED LEARNING 199

Table 10.4: Calculating information gain for each Split A and B.

Element Split A Split B

Regional

I(Dregional) = 1 − (p2trees + p2other)

= 1 − ((13
39)2 + (26

39)2

= 0.44̄

I(Dregional) = 1 − (p2trees + p2other)

= 1 − ((13
39)2 + (26

39)2

= 0.44̄

Northern

I(DA,north) = 1 − (p2trees + p2other)

= 1 − ((10
10+5)2 + 5

10+5)2

= 0.44̄

I(DB,north+) = 1 − (p2trees + p2other)

= 1 − ((9
9+0)2 + 0

9)2

= 0

Remainder

I(DA,remainder) = 1 − (p2trees + p2other)

= 1 − ((3
3+21)2 + 21

21+3)2

= 0.21875

I(DB,rem) = 1 − (p2trees + p2other)

= 1 − ((4
4+26)2 + 26

26+4)2

= 0.231̄

Information Gain
IGA = 0.44̄ − 15

390.44̄ − 24
390.21875

= 0.138̄

IGA = 0.44̄ − 9
390 − 30

390.231̄

= 0.26̄

Decision tree software typically calculates variable importance metrics based on goodness of split measures
(e.g., Gini Impurity) aggregated from all splits. Despite widespread adoption across programming languages,
each language implements the goodness of split calculation differently. In the rpart package in R, variance
importance of the kth variable (V Ik) is the sum of information gain from all splits that a variable plays a
primary or surrogate role:

V Ik =
J∑

j=1
(IGprimary,j) + α

M∑

m=1
(IGsurrogate,m)

The distinction between primary and surrogate depends on the completeness of data. A primary variable is
used to splits in a CART algorithm. However, missing values in the training or test set present problems
for splitting—the algorithm does not know how to handle missing information. In fact, this is a common
problem in most modeling approaches, including regression. A clever workaround introduced in Breiman
et al. (1984) is to employ a surrogate variable, which is backup splitting variable that mimics the primary
variable’s split behavior as close as possible.6 V Ik takes into account the information gained when a variable
is primary (J-number of splits) and surrogate (M -number of splits). As the surrogate variable is only an
approximation of the primary, the two might not always align in their predictions. The variable importance
of the surrogate is adjusted by how often it agrees with the primary (α). The resulting variable importance
V Ik can either be reported in raw information gain or normalized (V Inormalized = 100 × V Ik

max(V I))].

Variable importance can be also calculated as permutation importance, which measures how much does a
given variable contribute to predictive accuracy. Given a trained model with k-number of input variables,
the model scores k test sets. All test sets are a copy of the same dataset with one slight modification: each
dataset randomly shuffles one of the k variables, which has the effect of preventing the model from having
access to that variable’s information. If a variable is important and the model relies on it to achieve high
accuracy, the model would perform substantially worse because the variable is replaced with noise. When we
calculate predictive performance, the test set with the lowest accuracy corresponds to the most important
variable.

6Surrogate variables are beyond the scope of this chapter but are worth the effort when dealing with data streams of varying
degrees of completeness. If an observation is missing data, CART will skip that observation. Surrogate variables can improve
the chance that a prediction is produced—it is a backup.

200 CHAPTER 10. PREDICTION

While both metrics are useful, represent different concepts of importance. The goodness of split metrics
provide insight into the modeling process—what was used to build the tree. Permutation importance, in
contrast, grounds the conversation in terms of contribution to accuracy—which variables hold the most
predictive power, which may arguably be more useful in predictive contexts.

10.4.1.1 In practice

Decision tree learning can be a remarkable for prediction but how can we use it in practice?

CART lends itself to constructing profiles from its leaf nodes. Profiles are a convenient way to articulate
details that can identify a phenomenon of interest—-providing not only a picture of what the phenomenon
looks like but also a way to operationalize CART algorithms in the field. Parts of Northern Queens, for
example, were spared from the worst of Hurricane Sandy and can be identified as a region defined by a set of
geographic coordinates. The coordinate set can be used to define areas where field crews should and should
not allocate aid. It is easy to imagine that an incident commander instructs one team to focus on areas north
of a major boulevard and another team takes the remainder. Using profiles, however, is only as manageable
as the decision tree is simple. Otherwise, an deep, complex decision tree may prove to be complicated for
use—requiring bespoke, specialized software to keep track of hundreds of profiles.

CART’s variable importance measures are useful for telling a story about how much variables contribute to
the phenomenon of interest. While variable importance does not lend itself to crafting a story of how X causes
Y , it can provide audiences a look under the hood and some re-assurance about transparency. The variable
importance (goodness of fit) for each latitude and longitude are 36 and 39.5, respectively, indicating that
both factors had comparable contributions to the prediction problem. However, if the variable importance
for longitude were 240, we can infer that storm damage may have been slightly more distributed along an
East-West gradient than North-South (Table 10.5).

Table 10.5: The pros and cons of CART.

Useful Properties Challenges

Rules can be directly interpreted as “pro-
files”.

If left unpruned, overly complex trees may be too voluminous
to interpret.

Variable importance metrics help identify
most relied upon inputs.

Importance cannot be interpreted in the same vein as param-
eter estimates in estimates.

Well-suited to capture interactions and
non-linearities in data.

Tend to overfit, especially when the tree is unpruned.

Can accommodate both continuous and
discrete variables.

Unable to extrapolate beyond the range of the target variable
in the training sample.
Data-driven variable selection means less human control.

There are, of course, some shortcomings of CART models. The algorithm tends to overfit the data. As
a tree grows to its fullest extent, the algorithm might “over-split” partitions, making leaf nodes that are
insignificantly small (e.g., n = 1). You can imagine that using predictions with a partition of n = 1 is a
foolhardy endeavor. It is for this reason that trees should be pruned.

Tree learning, like many machine learning methods, will experience difficulty extrapolating beyond the
bounds of the continuous target variables. Because CART models are a non-parametric technique, they
can only produce predictions within a range of values that they have already observed. For example, if
we would like to predict a company’s revenue that has historically been fluctuated between $50 million to
$300 million, the CART model can only produce predictions between $50 million to $300 million. Successful
companies, however, will likely experience long-run growth and their revenue will grow beyond the range in
the training sample. A CART producing predictions will simply fail to predict any higher or lower than the
training range.

10.4. TREE-BASED LEARNING 201

There is hope for certain types of data. When working with time series (e.g., revenue over time, crimes over
time, etc.), for example, we can convert the target series into a percent first difference:

Δyt = 100 × (yt − yt−1
yt−1

)

Differencing has the effect of converting data into a mean-reverting process in which the outcome’s values
hover around the mean or zero rather than drifting out of bounds.

In the 1990’s and early 2000’s, the tree learning literature made large leaps forward in finding ways to
overcome CART’s shortcomings. In the next section, we introduce one of the most influential models in use
in computational research and applied data science.

10.4.2 Random forests
Every quarter, economists around the world forecast the direction of the US economy. One well-regarded set
of forecasts is collected by The Wall Street Journal, tapping over 60 economists for their thoughts on next
quarter’s economic performance. The forecasts are then averaged to produce a consensus forecast (Williams
2019) that draws on the wisdom of the crowds. The beauty of this ensemble forecasting approach is that it
brings together a broad range of perspectives, each of which has its own bias. But when we average across
enough people, their biases equalize and we can produce a more accurate answer.

Like a single economist, the forecast from a single CART model can miss the target (see Plot (A) in Figure
10.7), but what if hundreds of CARTS were combined? It might seem like a farcical idea as all trees might
return identical results. However, if we bootstrap each training sample (random sampling with replacement),
each tree can learn from a different version of reality. Each tree still predicts the same concept, but its
slightly different perspective helps to make a more robust forecast. By aggregating the predictions from all
trees (bootstrap aggregation or bagging), we are essentially developing consensus forecast—averaging out the
biases of individual trees (Plot (D) in 10.7).

(A) Actual (B) CART

(C) 50 Bagged CARTs (D) Ensemble Average

Figure 10.7: Comparison of results of applying a single model to fit a curve versus an ensemble of models.

Although bootstrap aggregation can increase the robustness of predictions, all trees are likely to be correlated
because they have access to the same variables—they all may resemble one another. But imagine what if
the models within an ensemble are uncorrelated and do not resemble one another, yet they arrive at the
same conclusion. Achieving consensus with a wide range of perspectives is similar to having members from
opposing political parties agreeing on the same policy action—it arguably has higher potential of being right
than a unilateral motion.

Introduced in Breiman (2001), the Random Forest (RF) algorithm combines bagging with the random sub-
space method. As illustrated in Figure 10.8, the algorithm bootstraps B-number of samples to grow B-number
of trees. What makes Random Forests so robust to overfitting is how each tree is induced. For a training set

202 CHAPTER 10. PREDICTION

Figure 10.8: Process of growing a Random Forest.

of K variables, a subset of k variables is randomly drawn at each node of each tree. The number of variables
is fixed at k < K for all nodes and trees. The algorithm then evaluates the k variables with an attribute test
and splits the node based on the one that maximizes information gain. By drawing k, this random subspace
method forces trees to look different from one another.

The secret sauce of the random subspace method is the value of k. When k is small relative to K, there is a
lower chance that the same combination of variables will appear from one draw to the next, which increases
the chance that the trees are distinct and therefore uncorrelated. Forcing trees to be uncorrelated has the
effect of asking a panel of experts to look at the same problem with different information. If the majority
of trees are able to reach the same conclusion with partial information, then we can have confidence in the
prediction.

There is a trade off, however. When we lower k, we run the risk of ignoring the most predictive variables—
they might not be sampled in each node. In practice, the size of the variable subsample k needs to be tuned.
For a test sample of size n, the ensemble outputs a matrix of predictions that is n × B large, producing a
large distribution of predictions for every observation i.

How do all these predictions get reconciled into a single prediction? For regression problems, the prediction
ŷi for the ith record averages across each tree fb(xi):

ŷi = 1
B

B∑

b=1
fb(xi)

RFs trained for classification problems calculate the probability of each class c, then the predicted class is
determined through majority voting. For a given class c, calculate the proportion of trees that predict a class
label c:

ŷic = 1
B

B∑

b=1
[fb(xi) = c]

10.4. TREE-BASED LEARNING 203

The result is one of the most robust, standard algorithms in data science.

10.4.3 In practice
Although Random Forests are complex, they are an almost sure-fire solution that delivers reasonable results
without significant tuning, making it a general purpose algorithm for tabular data. Nonetheless, there may
be marked gains when hyperparameters are tuned with care. Tuning focuses on two parameters:

• Variable Subsampling. Each tree is grown on a fixed number of variables k. The default value of k is
typically set to k = p

3 for regressions and k = √
p for classification problems where p is the total number

of variables.7 When samples are large, grid searching for the optimal k can be quite time-consuming. A
happy medium involves a simple under-over approximation by testing values of k at the default setting
along with values at 2 × k and k

2 . If the model does not significantly improve at other values of k, then
an exhaustive grid search may not be worth the effort.

• Minimum Node Size. The minimum node size controls the size of leaf nodes in each tree, which in
turn dictates the size and complexity of each tree in the forest. Larger minimum node sizes equate
to shallower trees and shorter training elapse times. By default, node size should be set to n = 5 for
regression problems and n = 1 for classification problems.

The number of trees in the forest can also be tuned, but the effect of the number of the trees influences the
stability of consensus rather than accuracy itself: how many trees are needed for predictions to converge and
become reliable? Too few trees lead to noisy predictions; However, too many trees might not yield marginal
improvement in accuracy. It would be reasonable to forego tuning this parameter (Hastie, Tibshirani, and
Friedman 2001) and rely on a default number of trees, typically set at 500.

An aside on cross validation. For most ML algorithms, hyperparameter tuning is coupled with a cross-
validation strategy. Random Forests, however, have a clever built-in validation strategy that takes advantage
of an artifact of bootstrapping: approximately two-thirds of the sample’s unique observations are captured in
each bootstrap sample, leaving one-third of observations untouched. These untouched observations, or out-
of-bag sample (OOB) are a built-in test set that is useful for gaging model fit. The OOB error is estimated
by averaging performance across OOB samples, which has been shown to produce error estimates that are
as accurate as a test sample of the same size as the training (Breiman 1996). Nonetheless, algorithm horse
races will test all algorithms using a more typical cross-validation strategy.

How about interpretation? Unlike their CART siblings, articulating profiles from individual leaf nodes is
not possible due to the bootstrap aggregation and random subspace sampling. Instead, Random Forests
can help data scientists under Random Forests do, however, make use of variable importance metrics that
average across its forest—average of Gini Impurity for classification problems or mean decrease in variance for
continuous values. In addition, graphical techniques have been developed to show the relationships contained
with the algorithm. Partial Dependence Plots (PDP) show how an input variable correlates with the target
in the form of smoothed line. As Random Forests capture non-linearities, PDPs visualize the shape of the
relationship. In addition, Break Down Decompositions provide a granular interpretation of how each input
variable contributes to a specific predicted instance.8

With all the additional moving parts, are Random Forests really worth the trouble? This algorithm is the
emerging workhorse of data-driven public policy and its use is only accelerated as it is widely available in
most programming languages. This leaves one question: Can its superior accuracy outweigh its complexity?
As we will see in the DIY example, the gain in accuracy can be quite significant (Table 10.6).

7While discrete variables appear to be one variable, Random Forests and other ML algorithms treat these variables as a
dummy variable matrix (also known as one-hot encoding in computer science). Thus, a discrete variable with 200 categories is
treated as 200 variables, which in turn sets k = 14 for classification or k = 66 for regression problems.

8These diagnostics are useful for Random Forests as well as many other machine learning techniques.

204 CHAPTER 10. PREDICTION

Table 10.6: The pros and cons of Random Forests.

Useful Properties Challenges

Incredibly flexible and produces reason-
able results without tuning.

Unable to extrapolate beyond the range of
the target variable in the training sample.

Variable importance metrics help identify
most relied upon inputs.

Importance cannot be interpreted in the
same way as parameter estimates in linear
model.

Well-suited to capture interactions and
non-linearities in data.

Deeper, more complex trees are computa-
tionally costly.

Can accommodate both continuous and
discrete variables.

Data-driven variable selection means less
human control.

Out-of-bag error estimate has the same
approximate effect as a more costly cross-
validation approach.

10.4.4 DIY: Wage prediction with CART and random forests
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch10-trees.Rmd.

How much is a fair wage? Societies have pondered this question for ages, but perhaps more so in the modern
age. There have been long-standing concerns over the gender, ethnic, and racial pay gaps, which had seen
progress at one point but more recently has stagnated (Hess 2019, 2016). To remedy these pay differentials,
some US cities such as New York City and Philadelphia as well as states like California have banned employers
from asking for applicant salary history (Cain, Pelisson, and Gal 2018). What should be considered to be a
fair wage? One way we can evaluate a wage is to predict it based on historical data on industry, experience,
and education while omitting demographic factors. In fact, decomposing the contributing factors of wage
attainment has been a task that policy researchers have long studied with the hope of improving labor
policy. For example, Krueger and Summers (1988) examined wage differentials of equally skilled workers
across industries, taking advantage of labor quality.

In this DIY, we prototype a tree-based model to predict wages based on worker characteristics gathered from
a widely used survey. Having an accurate prediction model can be used to evaluate if staff are undervalued
in the market, which in turn can be used to pre-empt possible churn by offering pay increases. A wage model
could help set expectations on employment costs as well as scoring new positions to support budgetary and
human resources use cases.

Data. Drawing on the US Census Bureau’s 2016 American Community Survey (ACS), we constructed a
training sample (train) and test sample (test) focused on California. Each sample randomly draws a set
of n = 3000 records, mainly to reduce the computational overhead for this exercise while preserving the
patterns in the data.9 The data have been filtered to a subset of employed wage earners (> $0 earned) who
are 18 years of age and older. Each sample contains the essential variables needed for predicting fair wages,
namely experience, education, hours worked per week, among others:

• id is a unique identification number
• wage of the respondent in 2016.
• exp is the number of years of experience (approximated from age and education attainment)
• schl is the highest level of education attained.
• wkhp is the hours worked per week.
• naics is a NAICS code used to identify the industry in which the respondent is working.
• soc is a description for the Standard Occupation Code (SOC) used for job classification.

9The ACS is a probability sample with sampling weights. To produce population statistics from the data, we need to account
for these weights; However, for this use case, we will treat each observation with equal weight.

https://github.com/DataScienceForPublicPolicy/diys

10.4. TREE-BASED LEARNING 205

• work.type. Class of worker indicates whether a respondent works for government, for-profit business,
etc.

Load data
load("data/wages.Rda")

Let’s get to know the data. In Figure 10.9, we plot the relationship of wage against years of experience.
We find that wages increase with each additional year of experience up to 20 years, plateaus for 20 years
then gradually decline after 40 years. While there is a clear central trend, each person’s experience is quite
variable—some achieving high salaries even while the age trend declines. The value of education, as seen
in Figure 10.10, also has an impact on wages, but it is only realized once enough education has been
accumulated. In fact, the box plot suggests that median wage only grows at an accelerated pace once an
individual attains an Associate’s Degree. There is a large increase in the median wage among Bachelor’s to
Master’s degree holders, although the wages of a Bachelor’s rivals the earning potential of graduate degree
holders.

Training. Of the two tree learning algorithms that we have covered, namely CART (rpart package) and
Random Forest (ranger package), which will produce the best results? We can arrive at an answer by running
a horse race in which the average RMSE is estimated for each model through cross validation.

0

50000

100000

150000

200000

20 40 60
Years of Experience

W
ag

e

Figure 10.9: Wage by years of experience.

Load packages
pacman::p_load(caret, rpart, ranger)

A fair horse race tests all algorithms under the same conditions. In this case, we compare models with the
same training and test sets, same input variables and trained using fivefold cross validation.10 As for the
input variables, we could hand-select a set that we believe best represents wages at the risk of biasing the
predictions. Alternatively, we “toss in the kitchen sink” in which all variables are included in all models,
allowing the algorithm to identify the most statistically relevant variables.
Validation control
val_control <- trainControl(method = "cv", number = 5)

Specification
input_formula <- as.formula("wage ~ exp + schl + wkhp + naics + soc + work.type")

10The number of folds could be increased but with greater time cost. As you will see when we begin training the models, the
Random Forest will take some time to run. If the number of folds was increased, we not only would obtain more precise model
accuracy estimates but the time required also increases. Thus, we select a smaller value for demonstration purposes.

206 CHAPTER 10. PREDICTION

01 − No school
03 − Kindergar

04 − Grade 1
05 − Grade 2
06 − Grade 3
07 − Grade 4
08 − Grade 5
09 − Grade 6
10 − Grade 7
11 − Grade 8
12 − Grade 9

13 − Grade 10
14 − Grade 11
15 − 12th grad
16 − Regular h
17 − GED or al
18 − Some coll
19 − 1 or more
20 − Associate
21 − Bachelor'
22 − Master's
23 − Professio
24 − Doctorate

0 50000 100000 150000 200000
Wage

Figure 10.10: Wage by education attainment.

CART. To train CART in caret (method = "rpart"), most of the effort is spent on tuning the complexity
parameter cp that controls how deep the CART grows. When cp = 0, a CART can grow to its fullest,
otherwise, any value 0 ≤ cp ≤ 1 will limit the extent to which the tree will grow—essentially a stopping
criteria. For a prototype, an approximate solution will do. By setting the tuneLength = 10 argument, caret
will test ten different cp scenarios, keeping the value that minimizes the loss function. The code below trains
a regression tree on all available inputs, excluding the id column (column one).

Set seed for reproducibility, then train
set.seed(123)
fit_rpart <- train(input_formula,

method = "rpart",
data = train[, -1],
tuneLength = 10,
trControl = val_control)

Let’s take a look at the results captured in fit_rpart$results as shown in Table 10.7. As the cp value falls
to zero, the model becomes more complex and learns more intricate patterns in the data, which in turn causes
the error to fall sharply. It also becomes clear how sensitive CART performance is to tree complexity—if it
is not complex enough, the model will produce underwhelming results that miss the mark. Overly complex
trees, in contrast, produce noisy results. Finding the Goldilocks value of cp is name of the game.

Pro Tip: Although the lowest cp value has the best performance (lowest RMSE), it is statistically indistin-
guishable from other cp values that are within one standard deviation of the lowest RMSE. A well-accepted
rule of thumb, as proposed in Hastie, Tibshirani, and Friedman (2001), is to choose the largest cp value that
is still within one standard deviation of the lowest RMSE. In effect, this decision-theoretic defaults to the

10.4. TREE-BASED LEARNING 207

Table 10.7: Cross-validated performance for each level of tree complexity.

cp RMSE R-Squared MAE SD(RMSE) SD(R2) SD(MAE)

0.008749 34457 0.364 24736 1217 0.035 1143
0.008921 34424 0.365 24793 1085 0.035 1024
0.009219 34516 0.362 24933 1116 0.032 1003
0.01699 35246 0.332 25698 385 0.04 249
0.01799 35569 0.32 25939 813 0.037 317
0.02324 36391 0.289 26532 1116 0.025 512
0.02598 36529 0.283 26670 1048 0.028 463
0.02821 37372 0.249 27392 1114 0.049 808
0.05154 38132 0.216 28012 2161 0.053 1429
0.1622 41751 0.148 31994 3004 0.001 2675

simplest model available that does not lead to a substantial loss in accuracy. caret automatically identifies
and stores the optimal cp value in fit_rpart$bestTune. Despite tuning the CART model, even the best
model has relatively modest performance—perhaps a Random Forest can offer an improvement.

Since the Random Forest algorithm computationally demanding, we need a package that is built to scale.
The ranger package was developed with this in mind, making it a perfect choice for rapid model train-
ing. Through caret, we train a Random Forest model by specifying method = "ranger" and tune four
hyperparameters:

• mtry (optional) is the number of variables to be randomly sampled per iteration. Default is√
k for classification and k

3 for regression. Default set to the square root of the number of
variables.

• ntree (optional) is the number of trees. Default is 500.
• min.node.size (optional) is the minimum size of any leaf node. The default settings vary

by modeling problem. For example, the minimum for regression problems is n = 5, whereas
the minimum for classification is n = 1.

• max.depth (optional) as the maximum number of splits between a tree stump (one split)
and a fully grown tree (unlimited). This is similar to a stopping rule in CART. By default,
max.depth = NULL indicating unlimited depth.

We could task caret to test a large number of automatically selected scenarios by setting tuneLength. To
save on time, we instead specify sensible default hyperparameters: each tree sub-samples

√
k variables per

tree (mtry = 24 in this case).11

An aside: why not tune the Random Forest? Random Forests are computationally intensive and conducting
a grid search can be time-consuming. As an initial prototype, the objective is to produce something that is
as accurate but operational as possible to prove that the concept works. Show the thing and prioritize speed.
A Random Forest trained even with default hyperparameters generally offers improvements over CART
and linear regression. Thus, testing a single hyperparameter set might yield clear gains over the alternative
CART—a good zero-to-one improvement—a version 1 (v1). If we see little or no improvement, then we can
assume that a Random Forest could require more exhaustive effort to optimize—a good candidate for a
version 2 effort (v2).

Since ranger is built for speed, it foregoes diagnostic calculations like variable importance that slow the
training process. Simply specifying importance = "impurity" in the model call instructs ranger to retrieve
the goodness of fit-based measures during training.
Set hyperparameters
scenarios <- expand.grid(mtry = 24,

splitrule = "variance",
min.node.size = 5)

11As each level of a categorical variable (e.g., soc, naics, schl) is treated as a dummy variable, we test mtry = 24.

208 CHAPTER 10. PREDICTION

Train and cross validate through user-specified grid search
fit_rf <- train(input_formula,

method = "ranger",
data = train[, -1],
trControl = val_control,
tuneGrid = scenarios,
importance = "impurity")

Evaluating models. Whereas the best CART model has a RMSE of 34,424 and a R-squared of 0.37, our
Random Forest scenario performs markedly better with a a RMSE of 30,930 and a R-squared of 0.51.12 The
decision is an easy one: pick on the Random Forest.

Raw accuracy is hard to sell, even if the performance gains are large.13 What is technical satisfaction for
a data scientist might not be for policy makers—there is a need for a policy narrative that maps where
an algorithm or program in the normative. There is a need for closure and transparency, especially when
decisions are being made.

A natural starting point is to inspect the variable importance metrics contained in the fit_rf object to tell
that story. As shown in Table 10.8, the Random Forest derives the most information from the number of
hours worked (wkhp), followed by years of experience (exp) and various levels of education attainment (schl).
Remember, importance does not show direction of correlation, but rather shows how much the algorithm
relies on a variable to split the sample.

Let’s take the analysis one step farther and visualize the shape of the underlying relationships. Partial
dependence plots (pdp package), for example, render a trained algorithm in a lower dimensional space to
expose the average relationship between a model’s predictions and its continuous variables. Figure 10.11
plots the partial dependence for years of experience (exp), finding that the Random Forest’s predictions
yhat mold to the non-linear trend that we had previously seen in the EDA. The gain in wages with each
additional year is relatively modest in the long run, but are quite large early in one’s career.

Table 10.8: Top 10 most important variables from the Random
Forest model.

Variable Importance Variable Importance
wkhp 100 soccmm-software

developers,applications and
systems software*

21.11

exp 39.09 naics5415 19.07
schl22 - master’s degree 39.06 schl24 - doctorate degre 14
schl21 - bachelor’s degr 36.02 schl23 - professional de 13.29
schl16 - regular high sc 22.36 naics722z 12.14

Load packages
pacman::p_load(pdp)

Partial Dependence Plot using pdp
partial(fit_rf,

pred.var = "exp", plot = TRUE,
plot.engine = "ggplot2") +
ggtitle("Years of Experience") +
theme_bw() +
theme(plot.title = element_text(size = 10))

12Note that exact results will differ slightly from one user to the other due to the random sampling in cross-validation.
13Contextualized performance gains in terms of dollars and lives saved are a different story, however.

10.4. TREE-BASED LEARNING 209

48000

49000

50000

51000

52000

20 40 60
exp

yh
at

Years of Experience

Figure 10.11: Partial dependence plot for years of experience.

For non-parametric algorithms like Random Forest, effect decomposition is not normally possible; However,
more recent techniques such as Locally Interpretable Model-Agnostic Explanations (LIME) have been devel-
oped to decompose the effect of each input variable on the target (Staniak and Biecek 1988). As implemented
in the broken function in the breakDown package, the LIVE technique approximates input variable effects
by creating an artificial dataset in the near proximity around each observation, then identifies input vari-
ables that cannot be modified without resulting in a significant impact on prediction for the observation in
question. Figure 10.12 maps the input variable impacts on one labor force participant. Whereas the baseline
is the average wage in the sub-sampled data (just over 50,000), the prediction is equal to the baseline wage
plus the final prognosis (around 45,000). How did we arrive at that number? Starting from the baseline, we
first see that working in retail sales has a lower earning potential (red bars), but the market compensates
college educated workers more (green bars). 45,000. Keep in mind that the decomposition is controlled to
the prediction ŷi—the insights are only useful if the algorithm achieves a high degree of accuracy.
Load packages
pacman::p_load(breakDown)

Obtain break down for the 100th observation in train
bd_plot <- broken(fit_rf,

baseline = "intercept",
new_observation = test[2500, -1],
data = train[sample(1:nrow(train), 1000), -c(1:2)])

plot(bd_plot, add_contributions = F)

Producing predictions. Random Forests produce predictions like any other algorithm by making use of
the predict function. Below, the trained model scores the test set in order to obtain the point estimate.
This is suitable for most policy applications.
yhat_rf <- predict(fit_rf, test[, -1])

In some cases, it can be useful to have access to predictions from each tree in the Random Forest to facilitate
an understanding of the uncertainty behind each prediction. These predictions, however, are generally not
accessible through caret. In the code snippet below, we illustrate how to train a Random Forest using the
ranger package, then obtain a matrix in which each tree’s prediction is returned by specifying predict.all
= TRUE in the predict function.

210 CHAPTER 10. PREDICTION

(Intercept)

+ soc = SAL−RETAIL SALESPERSONS

+ naics = 4451

+ exp = 10

+ work.type = For−Profit

+ wkhp = 40

+ schl = 21 − Bachelor's degr

final_prognosis

39000 42000 45000 48000 51000

Figure 10.12: Break down decomposition plot for a single observation. As breakdown can require significant
computational resources with large datasets, we approximate the decomposition by providing a random
subsample of n = 1000 observations.

Train Quantile Random Forest
fit <- ranger(input_formula,

data = train[, -1])

Retrieve matrix of all predictions
yhat_all <- predict(fit, test[, -1],

predict.all = TRUE)

Incorporating uncertainty of a prediction can enable compelling use cases. For example, suppose we would
identify workers who are compensated adequately and those who could benefit from a raise. In the set of
small multiples in Figure 10.13, we can see that exactly 24 randomly sampled individuals’ wages fall in
relation to the predictions made by the ensemble. For the most part, the 10th and 90th percentile flank the
actual wage, which could inform employment decisions. This information could feed into setting, negotiating,
and budgeting for wages. Alternatively, by training a Random Forest without the protected demographics of
interest. The predicted wages could be useful for identifying systematic biases and help evaluate fairness of
pay. For analyzing pay equality, one could use the Random Forest to predict the possibilities for one’s wages
devoid of demographics, providing a more unbiased way of evaluating fairness in pay. In any case, these
models are the backbone for applied use. There are still some last mile tooling that need to be considered so
that stakeholders can easily use the ML model’s predictions for their day to day. As we will see in Chapt. 13,
trained algorithms can be rolled into a data product—the last mile that allows data science to be valuable
to users.

10.5 An introduction to other algorithms
While machine learning is only starting to find its way into public policy settings, the techniques described
in this chapter will likely be sufficient for most use cases. However, the field of machine learning is rapidly
evolving and it would be benefiticial to periodically review notable advancements. In the Journal of Machine
Learning Research (JMLR), the number of published peer-review articles increased by 2.5-times from 73 in
2005 to 184 in 2019.14. The open source pre-print article archive, arXiv, boasted a 23.7-times increase in
the number of articles on artificial intelligence from 156 in 2005 to 3,697 in 2018 (Hao 2019). Indeed, the
increased availability of inexpensive computational infrastructure and open source software has accelerated
progress in this area.

14These estimates were calculated from articles listed at the JMLR website https://www.jmlr.org/papers/

https://www.jmlr.org/papers/

10.5. AN INTRODUCTION TO OTHER ALGORITHMS 211

Figure 10.13: Kernel density plots of predictions from 500 trees compared with an individual’s actual wage.
The black dashed line represents a single wage’s wage, the gray dashed lines are the 10th and 90th prediction
percentiles, whereas the kernel density contains all the predictions.

In this section, we introduce a pair of advanced machine learning techniques that will no doubt see widespread
use in pubic policy: gradient boosting and artificial neural networks.

10.5.1 Gradient boosting
Gradient boosting is a tree-based ensemble algorithm that has gained in popularity due to its use in Kaggle
competitions. As developed in Friedman (2001), gradient boosting learns patterns through a stage-wise
process by adding M -number of decision stumps.15 A decision stump is a single split decision tree. It is a a
weak learner, which is a model that needs only to be slightly better than random. As each stump is added,
the algorithm corrects for previous fitting errors, thereby fine-tuning the predictions. The equation below
summarizes how each new stump fm(x) is combined previously learned stumps to produce the overall model
(FM (x)):

FM (x) =
M∑

m=1
ηfm(x)

Correcting for errors is akin to compressing an inflated balloon into a desired shape, say a tetrahedron: As the
balloon is squeezed on one side, another part of the balloon expands requiring additional pressure to correct
for changes. Thus, there is a chance that each stump might over-correct for previous errors. To mitigate
the chance of overfitting, Friedman (2001) proposed a shrinkage parameter (η) to dampen the influence of
each stump on the predictions. The shrinkage parameter is bound between 0 and 1, which has the effect of
adding only a fraction of each stump is added to the prediction. As η decreases, a smaller fraction of each
decision stump is added, allowing the algorithm to take smaller, fine-tuned steps toward convergence. There
is a trade-off. When η is small, the number of iterations M needs to be increased to help the algorithm
converge to the optimum. Thus, η and M must be tuned together.

Each implementation of gradient boosting has different hyperparameters and features that give the user
flexibility to optimize the model for their specific problem. Perhaps the most popular of these implementations
is the XGBoost package (Chen and Guestrin 2016). Not only is the package designed for scalable machine
learning problems, the package’s authors also went to great lengths to add functionality that allows for
exhaustive hyperparameter tuning (e.g., shrinkage parameter η, sub-sampling proportion, tree depth among
others).

Despite the extensive functionality, the main driver of predictive accuracy is the input variables. Most of
the accuracy from a gradient boosting machine will come from feature engineering in which data scientists

15Gradient boosting technically uses decision trees that can be grown arbitrarily deep. In this introduction, we only discuss
a simple decision stump or a one-split tree.

212 CHAPTER 10. PREDICTION

devise new ways to create variables from which the model can learn. The creativity required to produce
cleverly engineered input variables comes not from knowledge of machine learning, but rather understanding
the context in which it will be applied. For example, patient medical records can be used to engineer a wide
range of descriptive variables, such as “time since last visit”, “average length of stay”, “number of visits in
last 30 days”, “number of severe diagnoses in the last year”, “number of visits for chronic condition”, among
others.

While Random Forests are able to achieve a reasonable level of accuracy with minimal effort, a gradient
boosting model can achieve greater accuracy gains through hyperparameter tuning and feature engineering.
For this reason, we recommend that early stage projects should be built with Random Forest algorithms.
Then, gradient boosting can be used to further refine predictions in later stages.

For more detail about gradient boosting, consider reviewing the following seminal articles:

• Friedman, Jerome. 2001. “Greedy Function Approximation: A Gradient Boosting Machine”. Annals of
Statistics 29 (5): 1189–1232.

• Chen, Tianqi and Guestrin, Carlos. 2016. “XGBoost: A Scalable Tree Boosting System”. Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: 785–794.

10.5.2 Neural networks
Humans are naturally evolved to interpret on unstructured data such as speech, text, and imagery to convey
complex concepts. This unstructured data is intuitive to human eyes. We can examine swaths of pixels and
find the higher level concepts embedded within them, whether its people, places, etc. Unfortunately, these
abilities are not easily learned by machines. In fact, historically, we would need an army of people to perform
a large volume of vision and speech tasks.

While algorithms like logistic regression and tree-based models learn complex patterns from structured data,
they produce lackluster results when applied to unstructured data. Traditional techniques simply lack the
ability to make sense of pixels or sound waves and associate them with higher level concepts. Fortunately,
artificial neural networks (ANNs) can fill this gap.

From identifying objects in photos to predicting stock prices, ANNs are a type of machine learning that can
achieve feats that were previously thought to be science fiction. ANNs are inspired by networks of neurons—
the complex inter-connected mass of cells that makes up the brain. Human memory is stored in the brain’s
neural network, keeping track of intricate, nuanced information through the seemingly infinite connections
between neurons. An artificial neural network, as shown in Figure 10.15, is comprised of inputs (or input
variables), neurons (also referred to as neural units or nodes), and outputs. All inputs flow into neurons,
whether their values are discrete or continuous. Neurons sandwiched in-between inputs and outputs are part
of a hidden layer—a set of formulae that are not directly observable but provide input into other neurons.

A simple neural network with a single hidden layer with a single node is similar to a bivariate regression:

hk = φ

I∑

i=1
(wixi + b)

where each neuron hk is a weighted sum across all of its input variables xi. The wi is a weight (like a
coefficient) learned by the algorithm, xi is the ith input variable, and b is a bias term that serves as an
intercept. The key difference between regression and this simplified neural network is the activation function
(φ), which is inspired by biological neurons. Signals in the brain take the form of electric impulses that are
passed from one neuron to the next. Each neuron is not physically connected to the next, thus a neuron must
fire a signal that is strong enough to jump and register with the next neuron. In an ANN, the activation
function represents the gradient that a signal must overcome and how signal will manifest itself with the
next neuron.

As illustrated in Figure 10.14, there are a broad variety of activation functions that are suitable for different
applications:

10.5. AN INTRODUCTION TO OTHER ALGORITHMS 213

• The simplest case is the identity function that does not transform values.
• A rectified linear unit (ReLU) adjusts values so that values below zero are convert to zero, while values

greater than or equal to zero are retained. A favorite of deep learning techniques such as convolutional
neural networks, ReLU can help the algorithm capture non-linear patterns but does not preserve
information about negative values.

• Step and logistic functions both map values into a space between 0 and 1. The step function forces
values into a binary form: 1 if x ≥ 0, otherwise 0. The logistic function maps values into a non-linear
continuous space between 0 and 1. Large values converge toward f(x) = 1 while small values converge
toward f(x) = 0.

−5.0

−2.5

0.0

2.5

5.0

−5.0−2.50.0 2.5 5.0
x

f(x
)

Identity

0.00

0.25

0.50

0.75

1.00

−5.0−2.50.0 2.5 5.0
x

f(x
)

Step

0.00

0.25

0.50

0.75

1.00

−5.0−2.50.0 2.5 5.0
x

f(x
)

Logistic

0

1

2

3

4

5

−5.0−2.5 0.0 2.5 5.0
x

f(x
)

ReLU

Figure 10.14: Four activation functions.

In this specific case, the single hidden layer ANN is known as a single-layer perceptron network. By adding
more neurons and hidden layers (Graph (B) in Figure 10.15), we can construct a multi-layer perceptron
network—a forward flowing system of equations. All input variables flow into all neurons in the first hidden
layer, which in turn flow into all neurons in the second layer. The activation functions can be mixed and
matched to change the qualities of the signal at each layer and each node. These two ANNs are a case of
feedforward networks in which the direction of information is one way—from input to output. The tuning
process for ANNs is architecture-based, , meaning that the layout of the network impacts model performance
(e.g., how many nodes and hidden layers, which activation functions are used and what transformations are
applied, how does information move through the ANN, etc.). Each architectural decision changes an ANNs’
properties, allowing it to learn non-linear patterns with more hidden layers, accommodate different kinds of
data, and distinguish between nuanced targets.

These single and multi-layer perceptrons are among the simplest ANNs. In fact, advanced data science has
now turned its attention to deep learning—a broad class of neural networks that incorporates representation
learning. The term “deep” refers to multiple layers. As a deep neural network is trained, each successive
layer extracts higher-level information that represents complex concepts. In the case of images of people, the
input layer contains pixels. As the signal moves through each successive layer, downstream layers can capture
discrete human features such as eyes and ears, which in turn can be combined to identify specific people.
Deep learning techniques such as convolutional neural networks have dramatically improved capabilities for
object detection in images and video as well as speech recognition (LeCun, Bengio, and Hinton 2015) and
expanded the role of algorithms to hard tasks normally reserved for humans.

Some deep learning techniques are more appropriate for sequence and time series problems. LSTM neural
networks are optimized for predicting what comes next in time and keeping track of information over time
(e.g., what is the demand for Uber rides in all neighborhoods around the world? Which word would be
a good auto-completion recommendation?). Convolutional neural networks are well-suited for learning the
latent concepts in imagery (e.g., What differentiates a cat from a dog? What looks like urban sprawl versus
deforestation?). Interestingly, convolutional neural networks are particularly useful for producing artistic
style filters (e.g., style transfer) that are used for photographs posted to social media platforms.

214 CHAPTER 10. PREDICTION

I1

I2

I3

H1 O1

B1 B2
(A) Single node, single hidden layer

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

H1

H2

H3

H4

H5

H6

H7

H8

H1

H2

H3

H4

O1

B1 B2 B3
(B) Multiple nodes, two hidden layers

Figure 10.15: Two neural networks. (A) A neural network with a single node with a single hidden layer is
functionally the same as a logistic regression. (B) A neural network with multiple nodes and two hidden
layers can learn non-linearities in the data. Modern neural networks may include layers upon layers of hidden
layers to capture complex, latent patterns in the data.

Neural networks are well-adapted to handle micro-tasks like facial recognition and object detection, which
have clear utility for monitoring and operational tasks. However, it is not clear how these techniques can fit
into high level decisions. Their opaqueness can obscure the precise rationale behind a prediction, which pose
ethical dilemmas (e.g., why a prisoner was not granted parole). This is not to dismiss their potential role,
but rather more research is required to open the black box.

Neural networks can instead serve as data augmentation tooling—they can create data that support more
transparent use cases. Because the amount of data and infrastructure required to train a new neural network
is infeasible for most organizations, it has become commonplace to use pre-trained ANNs. In recent economics
research, Amazon’s Core AI and Economics team developed price predictions for consumer goods, which is
useful for inflation measurement. The innovation of this particular research was the use of pre-trained deep
learning models such as Embeddings from Language Models (ELMo) for text and ResNet50 for imagery to
produce embeddings (i.e., a type of variable) to improve price prediction. In turn, these embeddings were
used as inputs into a neural network to directly predict prices (Bajari et al. 2020).

The ecosystem of neural network frameworks is quite expansive. Software frameworks such as Keras, TensorFlow
and H20 are widely used. Furthermore, as deep learning requires large training data to be generalizable, there
are pre-trained models that are openly available, such as AlexNet, ResNet-50, ResNet-101 among other
creatively named implementations. We should note, however, that pre-trained models are known to exhibit
biases. The source of such biases will be discussed in.

For a conceptual in-depth treatment of deep learning and neural networks, consider reading: Neural Net-
works and Deep Learning: A Textbook (Aggarwal 2018b). By building a conceptual base, it becomes easier
to understand researched published in major conferences such as Neural Information Processing Systems
(NeurIPS) and publications such as the Journal of Machine Learning Research.

For hands-on treatment on deep learning, consider Deep Learning with R (Chollet and Allaire 2018). While
R can interface with some frameworks, the more common choice for deep learning is Python. Hands-On
Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build
Intelligent Systems (Geron 2017) offers a whirlwind overview of a number of the most popular frameworks.

10.6. BEYOND THIS CHAPTER 215

10.6 Beyond this chapter
In this chapter, we provided a broad overview of both traditional ML techniques and recent developments.
While these techniques have seen rapid adoption in private industry, the uptake in government has been at
a more cautious pace. Beck, Dumpert, and Feuerhake (2018) conducted a 2018 survey of 30 international
statistics producing institutions, finding over 130 machine learning projects in development. At the time,
only 15% of projects were in production—or in regular use supporting core operations. In contrast, 64% of
projects were in the idea or experimental phase, suggesting that the adoption and integration of predictive
methods were only in a nascent stage. In other areas of government, namely city agencies with “ground
operations”, ML techniques have seen more use.

In general, the pace of adoption in government is far slower. This can be explained by a couple of reasons.
First, public servants are generally trained in causal inference and estimation rather than prediction, thus
many might not be familiar with the distinctions. Second, because the distinctions are not yet clear, many
government officials have not had the chance to think through what constitutes a practical but ethical use
of the technology. Public sector agencies must naturally be more careful with its actions, weighing ethical
considerations and the impacts on constituents. This is stands in stark contrast to private industry where
the barriers to using such techniques are governed by the market—business leaders will deploy predictive
technologies as long as it has a positive effect for their business. As we will cover in Chap. 14, the ethics of
data are indeed quite complex.

Nonetheless, we argue that one should not shy away from these powerful techniques, but rather master
them in order to devise equitable ways of using them for the public good. A solid first step is to be able
to communicate what is happening in any model and that requires further study. A good place to start is
to review An Introduction to Statistical Learning (James et al. 2014). The text is written for R users and
provides clear explanations of algorithms at an introductory level. For more advanced yet broader coverage of
machine learning techniques, we recommend a pair of standard texts. The first is The Elements of Statistical
Learning: Data Mining, Inference, and Prediction (Hastie, Tibshirani, and Friedman 2001)—a modern classic
technical text is written from an applied statistician’s perspective. The second is Pattern Recognition and
Machine Learning (Bishop 2006), which is written from a computer scientist’s perspective. Ultimately, data
scientists need to build prediction pipelines to brings their algorithms to life and into action. For a hands-
on treatment that weaves the caret package with theory, consider Applied Predictive Modeling (Kuhn and
Johnson 2013).

Chapter 11

Cluster Analysis

11.1 Things closer together are more related
Precision anything is the domain of data science, since it relies on identifying patterns or similarities within
data. Modern marketing strategies, for example, match individuals to advertisements and offers intended to
change behavior, like voting for a specific candidate or buying a particular brand of shoes. Presenting an
advertisement for bathing suits does not make much sense for a consumer in Antarctica. Similarly, different
people along the US political spectrum subscribe to different positions on gun ownership, reproductive rights,
among other social issues.

If cost were no concern, each advertisement could be perfectly tailored to each receiving individual. There
would be as many narratives or messages as individuals. In reality, however, crafting a high quality message
that resonates with the reader takes time and resources, thus it is not a scalable process. The problem of
precision marketing is a constrained optimization problem. The objective is to change behavior, while the
constraint is cost. How many different messages should be crafted? Who should see which message?

To a data scientist, this sounds very much like a job for clustering—when groups of individuals or entities
can be identified by similarities in their observable characteristics. Clusters enable cost-effective strategies
for applying policy treatments, yet these clusters are not definitions that are set in stone. Instead, they are
latently defined. They do not have a label nor do we have a precise empirical definition for them, but we
recognize them when we see them. Clustering is especially useful right now in politics, since background data
on voters is more readily accessible than ever, whether it’s their purchasing preferences or behavior on social
media. It is now possible to have more refined and nuanced clusters of voters, which would respond at higher
rates to specific messages. These clusters now come with names like “Flag and Family Republicans” and
“Tax and Terrorism Moderates”—empirically identified by political campaigns (Koman 2006). The optimal
number of groups depends on the amount of campaign resources available, and how well the groups are
crafted from data—the rate at which they respond to the produced political messaging (Avirgan 2016). This
is the core idea behind micro-targeting—campaigns are tailored to distinct groups and even specific people
(Brennan 2012).

A rudimentary form of targeting was used as early as Jimmy Carter’s 1976 Presidential campaign in which
the country was segmented by issue and geography (Cillizza 2007). Surveying played a notable part in
understanding which issues matter to which demographics—what emotions are associated with different
social and fiscal matters (Curry 2007). In the information age, the possible data-driven strategies are also
associated with a “creepy” factor. As it turns out, individual level data such as brand preferences are
correlated with which candidate a voter is likely to vote. According to a survey conducted by a brand
consultant in 2016, Bernie Sanders supporters are 82% more likely to eat at Chipotle than the average
American, and Donald Trump supporters are 111% more likely to eat a Sonic (Higgins 2016). Thus, using
data that is common in marketing databases enable campaigns to define hyper-local, finely tuned clusters
for highly customized messaging.

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_11

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_11

218 CHAPTER 11. CLUSTER ANALYSIS

The interest and investment in micro-targeting in campaigns has only grown with each successive election
cycle. For example, the 2012 Obama campaign’s analytics team was five times as large as the 2008 campaign
(Scherer 2012). In the 2016 cycle, the campaign of Libertarian candidate Gary Johnson relied on Facebook’s
political ideology clusters to bolster his vote share (Shinal 2018). Granted, with the revelations of the
Cambridge Analytica scandal, criticism is mounting with some calling the microtargeted “dark advertising”
on Facebook a threat to democracy.

Nonetheless, clustering is just a statistical technique. Not only it is used for political campaigns and market-
ing, but it can help extract visual patterns in photographs and detect anomalous activity in web traffic. It is
not a tool that helps to identify “truth”, but rather should be viewed as an exploratory technique that brings
structure to otherwise unlabeled data. It is designed to find structure when none is obvious. It is a form of
unsupervised learning –when data are devoid of target variables or labels, clustering finds patterns that are
embedded in the input variables.

In this chapter, we explore the concepts that underlie clustering algorithms and their applications. As the
goal of clustering is quite different from supervised learning, we first introduce foundational ideas on which
most clustering algorithms are built —relating records to one another, then finding commonalities between
records or exploiting differences. We examine two standard clustering techniques and illustrate how they
can be applied to informing economic development targeting as well as structuring household consumption
patterns.

11.2 Foundational concepts
We are wired to see clusters of activity, to see patterns. For example, when we are presented with satellite
imagery (Figure 11.1), our eyes automatically start to hunt for patterns. Each image shows the intensity of
night-time lights in a different U.S. city. Presumably, the population density is correlated with the night-
time light intensity, and using light intensity, we can ballpark urban, suburban, and rural areas. This is basic
clustering—interpreting activity based on similarities in the data.

Figure 11.1: Night-time imagery from the NOAA-NASA Suomi NPP Satellite’s Visible Infrared Imaging
Radiometer Suite (VIIRS).

Harnessing the human eye on a large scale is not an easy or convenient task—it can be labor intensive and
costly. How does one do this programmatically, algorithmically, and at scale?

There is not just one definition of a cluster, nor is there a single approach for clustering observations. Is

11.3. K-MEANS 219

the key to clustering to find points that are close to one another? Or can it be defined in terms of likely
membership to a latent group? Or does it have to do with the density of observations? Like all things data
science, devising a successful analytical strategy depends on the objective, though we recognize this might
not be a satisfying answer in policy circles.

Let’s take the case of separating likely populated from underpopulated areas in satellite imagery of the San
Francisco Bay Area as seen in Panel (A) in Figure 11.2. In the false color imagery, we might assume human
activity is concentrated along two yellow strips of land while the ocean, bay, and rural areas shaded in blue.
Each pixel is a data point and its radiance (light intensity) is just one value in a matrix of radiances. In short,
imagery is data. The geographic relationships can be also presented in the form of a radiance distribution
(Panel (B)) in which there are at least two distinct types of activity in the imagery: the tall peak to the left
represent dark pixels where human activity is unlikely, whereas the long tail to the right contain pixels of
varying light intensity—the highest of which likely has the greatest population density. How do we separate
one group from the other?

A simple clustering approach could identify a radiance threshold that separates light and dark pixels—simply
eyeball a line in the radiance distribution and group pixels based on whether they are above or below the
cutoff point. If we think through the mechanics of that simple cutoff we are looking for a way to maximize
the gap between light and dark. A more rigorous strategy could define clusters based on centroids. A centroid
is the average value in a cluster and serves as a reference point against which all points are compared to
determine their cluster membership. An alternative strategy takes a bottom-up approach, measuring the
connectivity between pixels—how does each pixel relate to one another based on some concept of distance.
One bright pixel is not like to be too “far” from another bright pixel. Those two pixels may be more similar
to a slightly brighter pixel but are much less related to a dim pixel. By comparing pixels at a granular level,
we can map the hierarchy of relationship from the ground up—which are more associated with others. All
of these strategies are valid and are able to bisect the radiance distribution (see Panel (C)), allowing us to
quantize the data from a continuous distribution of radiances into two values that represent light and dark.
When mapped (see Panel (D)), the area around San Francisco is reduced to two shaded areas—light and
dark.

Perhaps most amazing of all, the algorithm was not “aware” of what it was searching—clusters are formed
without any guidance. It is ultimately up to the data scientist to examine the characteristics of each cluster,
determine if the clusters are grounded in reality or are artifacts of noise, and articulate a label for the cluster.
The San Francisco example is simple— the landscape can be divided into inhabited versus less uninhabited.
More complex social datasets (e.g., politics, economic development) or natural sciences (e.g., genetics) will
require more context to inform the cluster label.

There are a many clustering techniques that can be applied to everyday problems. They have the potential
to bring structure to everyday amorphous problems and are a fine starting point for exploring data. In
this chapter, we explore two of the most commonly used clustering algorithms: k-means clustering and
hierarchical clustering. Each clustering technique is motivated by different theories of how data should relate
to one another.

11.3 k-means
Perhaps the simplest of the clustering techniques is k-means. The algorithm is designed to identify k-number
of user-specified clusters, each of which is defined by a centroid that serves as a reference point. It is a
quantization technique capable of capturing the gist of data and compressing it into a concise form.

11.3.1 Under the hood
How does one find the centroid? The centroid in cluster c is the mean of each input variable. For example,
if wages and age are input variables, the centroid for cluster c would be comprised of two values:

220 CHAPTER 11. CLUSTER ANALYSIS

(A) Night−Time Imagery (B) Radiance Distribution

Dark Light

(C) Color Quantized (D) Clustered

Figure 11.2: Applying clustering to extract likely inhabited areas in the area around San Francisco: (A) False
color night-time imagery, (B) Kernel density of radiances, (C) Clustered or color quantized distribution, (D)
Imagery classified into light and dark areas.

µc,wages = 1
nc

nc∑

i=1
xi,wages

µc,age = 1
nc

nc∑

i=1
xi,age

This presents a chicken-and-the egg problem: do the points define where the cluster is, or does the cluster
determine the cluster label of each point? In actuality, the optimal location of each centroid is not known
and may not even truly exist. Nonetheless finding clusters in a k-means framework can be solved by starting
with a random guess, then iteratively refining the centroid coordinates. Before starting the algorithm, the
analyst must specify how many clusters k are believed to be in the data. While context and knowledge of
the problem space can inform the initial value of k, the value can be tuned as will be described later in this
section. The algorithm progresses as follows:

1. Initialization. To begin, the algorithm randomly generates k-centroids, each of which defined
within the space of the input variables. In addition, each centroid is assigned an identifying
number that serves as the label for its cluster c.

2. Assignment. The distance between each point i and each centroid is calculated. For continu-
ous values like radiances, wages, employment, among others, Euclidean Distance (d(x1, x2) =√∑n

i=1 |z1 − z2|2) is a suitable choice for measuring distance or dissimilarity, while Manhat-
tan distance is reasonable choice for discrete variables (e.g., demographics characteristics).
Each point is assigned to a cluster based on whichever centroid it is closest. The cluster
assignment after this first iteration is unlikely to be optimal – it is random.

3. Update. The algorithm proceeds to update the centroid by calculating the mean value of
each input variable for points in each cluster c. This procedure shifts the center mass of the
cluster. With the new centroids in place, repeat Step 2.

This assignment-update procedure (Steps 2 and 3) is repeated so that the algorithm can converge on an
optimal solution. The algorithm has converged when cluster assignments no longer change.

11.3. K-MEANS 221

From a statistical lens, we can frame k-means as an optimization problem. The objective is to find the cluster
assignments that minimizes the total cluster variance:

argmin
k∑

c=1

n∑

i=1
(Xc,i − µc)2

in which variance is the sum of squared distances between each point i in cluster c to its centroid µc.

11.3.2 In Practice
While k-means is a simple algorithm, there are a number of quirks that one must keep in mind in order to
use it responsibly.

Stability of clusters. While randomization kick starts the algorithm, it runs the risk that the same starting
conditions can be run twice and yield different results. In fact, the cluster label for each point can be different
from one model run to the next! A centroid can straddle two clusters that the human eye may otherwise
deem as separate and distinct (see Figure 11.3).

How can this be? Is this a design flaw?

One source of instability is the number of variables and their scale. Similar to KNN in supervised learning,
all input variables should have equal influence on how the algorithm converges on its results. For example,
the effect of an age variable on a range of 20 through 50 will have a different weight than a wage variable
distributed from 100,000 to 1 million. If each variable has different ranges of values and dispersion, the
algorithm will lean on one variable more than others.

High dimensional datasets pose challenges as well. When faced with a large number of variables, both signal-
packed and noisy variables are considered equally, allowing irrelevant information to play a disproportionate
role in cluster determination. Though this is not a problem specific to k-means, it can cause centroids to
fall into local optima—there may be more nooks and crannies on the optimization surface into which the
model may fall. To avoid biasing the results toward one variable, consider scaling variables using a standard
z-score transformation, which ensures that all variables have unit variance. Also, favor parsimony—limit the
number of variables to reduce the effect of confounding factors.

(A) Suboptimal (B) Optimal

Figure 11.3: Comparison of a suboptimal and optimal results from a k-means algorithm.

Tuning. As we can see in Figure 11.3, the human eye can identify k = 4 clusters. If k = 3 were specified,
k-means would be forced to group two or more clusters together. Conversely, k = 5 would force the algorithm
to split clusters into fractions of a cluster—a suboptimal result. While it is necessary to find the optimal k,
there is a lack of consensus on how to correctly tune k-means algorithms. In some cases, the data scientist

222 CHAPTER 11. CLUSTER ANALYSIS

may choose a small value of k that is small enough to articulate to audiences (e.g., there are five types of
people in the world. . .). While this is convenient, it is arbitrary.

The Elbow method is a more data-informed approach that compares the total cluster variance across multiple
values of k. As seen in Figure 11.4, the curve that emerges from plotting the variance over values of k will
be downward sloping. In an optimization problem, the natural tendency is to select the smallest value of k;
However, doing so in this case does not provide any useful information. In fact, the total cluster variance
should approach zero as k approaches the sample size. The curve should ideally “bend” like an arm (Panel
(A)), indicating that beyond some value of k, there are a diminishing returns to each additional k. The
inflection point is that value of k. It is the “Goldilocks” value. There is one problem with the Elbow method:
a clear inflection point is not always present (Panel (B)).

A more computationally intensive strategy optimizes the Silhouette value, which compares the similarity of
a given observation i to observations within and outside its cluster. The silhouette s(i) is defined as

s(i) = bi − ai
max(ai, bi)

where ai is the Euclidean distance between a point i and other points in the same cluster, bi is the minimum
distance between i and any other cluster of the sample. The silhouette takes on values of −1 ≤ s(i) ≤ 1,
where 1 indicates that an observation is well matched with its cluster and −1 indicates that fewer or more
clusters may be required to achieve a better match. Put into action, for each of k that is tested, the silhouette
value is calculated for every observation and summarized as the mean silhouette. The largest mean silhouette
marks the optimal k.1

0e+00

1e+09

2e+09

1 2 3 4 5 6 7 8 9 10
Value of k

To
ta

l c
lu

st
er

 v
ar

ia
nc

e

(A) Elbow present

0.00

0.25

0.50

0.75

1 2 3 4 5 6 7 8 9 10
Value of k

To
ta

l c
lu

st
er

 v
ar

ia
nc

e

(B) No elbow present

Figure 11.4: Elbow method: Choose k at the inflection point. (A) Inflection point identified at k = 3, (B) No
inflection point identified.

Scoring. Suppose a k-means algorithm has converged and clusters have been defined. If presented with new
data, how can new observations be mapped to the pre-defined clusters? Much in the same way as defining
a cluster, new observations simply need to be assigned to the nearest cluster centroid. One practical way to
score the new dataset is to treat it as a nearest neighbors problem (kNN) in which the goal is to identify
which centroid is the nearest neighbor. By applying kNN setting k = 1, each new observation is scored by
treating the cluster labels as the target variable and the centroids as the input variables.

Other considerations. Cluster instability and sensitivity to high dimensionality can limit the usefulness
and reliability of k-means. But are there other limitations? For one, k-means is based on minimizing total
cluster variance, which works best when the shape of clusters is spherical and symmetrical. In fact, k-means
generally have difficulty in neatly identifying clusters when the cluster shape is anything other than spherical,

1We illustrate the silhouette method in the following DIY section.

11.3. K-MEANS 223

has outliers that skew the cluster’s shape, or contains noise in the data that reduces the distance between
clusters. In practice, however, some data simply do not lend themselves to producing neat clusters—there is
not clear pattern. Instead, applying k-means in these cases has the effect of ranking groups of observations.
For example, applying clustering on highly correlated variables such as age and wage has the approximate
effect of segmenting observations by quantile (e.g., older high earners, young low earners), thereby producing
grouped rankings.

Nonetheless, k-means is a good first step for many clustering problems. It is remarkably fast and efficient,
and the method exposes latent structure in the data. However, like any technique, it has its shortcomings.
As we will see later in this chapter, there are more sophisticated algorithms with useful features, such as
hierarchical clustering and density-based clustering.

11.3.3 DIY: Clustering for economic development
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch11-kmeans.Rmd.

Economic development corporations and chambers of commerce support local communities by attracting jobs
and investment. Given the need for more jobs around the country grows, economic development initiatives
are fierce affairs, sometimes pitting one community against another in bidding wars over tax benefits. In
2018, Amazon.com announced new secondary headquarters in New York City and Arlington, VA after an
exhaustive 20 city search (Amazon 2018).2 The global manufacturer Foxxconn announced it will bring high-
tech manufacturing to Racine, WS (Romell and Taschler 2018). And a long-standing “border war” between
Kansas City, MO and Kansas City, KS has seen a number of high profile companies like AMC Theaters move
headquarters a mere miles, chasing economic benefits (The Economist 2014).

Beyond the bidding war spectacle, there are other issues that factor into these siting decisions. Furthermore,
not all companies are as high profile as the ones described above but are nonetheless important due to their
contributions to the economy. For one thing, the prospective host region of new jobs should have the right
economic conditions to sustain and foster the new opportunity. Suppose a tech executive in Santa Clara or
Alameda in the Bay Area in California wanted to find another county with similar socioeconomic conditions.
Based on available data, how would one find a list of comparables? The same question could be asked in
reverse for economic developers: what are other areas that are in direct competition?

A competitive analysis could first consider which observable characteristics of a city or county are selling
points for prospective businesses. Is it the size of the labor force? Is it the relative size of the target industry?
Or perhaps it is related to education of the labor force or the local cost of employment? In any of these cases,
publicly available economic data can be clustered using the k-means technique to surface insights on the
market landscape. Below, we illustrate a simple process of finding clusters of comparable economic activity,
focusing on finding clusters associated with tech industries.3

Set up. We start by loading the cluster library that has utilities for evaluating clustering results, then
import a county-level dataset that contains information for over 3,100 US counties.
Load library
pacman::p_load(cluster)

Load data
load("data/county_compare.Rda")

The underlying data is constructed from a variety of U.S. Census Bureau databases, in particular the Amer-
ican Community Survey, County Business Patterns, and the Small Area Income & Poverty Estimates.

• fips: Federal Information Processing System code that assigns a unique ID to each county.

2This later was revised to only Arlington, VA due to local politics in New York.
3For simplicity, we define online tech industries using NAICS codes 5182, 5112, 5179, 5415, 5417, and 454111 although we

recognize this may exclude sub-industries that are rapidly growing in importance in tech.

https://github.com/DataScienceForPublicPolicy/diys

224 CHAPTER 11. CLUSTER ANALYSIS

• state and name: The US state abbreviations and the name of the county.
• all.emp: total employment (U.S. Census Bureau 2018b).
• pct.tech: percent of the employed population in tech industry (U.S. Census Bureau 2018b).
• est: percent of company establishments in that industry (U.S. Census Bureau 2018b).
• pov: the poverty rate (U.S. Census Bureau 2017a).
• inc: median household income (U.S. Census Bureau 2017a).
• ba: percent that is college educated (U.S. Census Bureau 2017a).

Clustering. Before we apply k-means, the data should be mean-centered and standardized so that no single
input has disproportionate influence on clustering (the equal weights assumption). The scale function is
applied to the numeric fields (column 4 onward), then the output is assigned to a new data frame inputs.

inputs <- scale(cty[,5:ncol(cty)])

Let’s get comfortable with the clustering process. As a dry run, we apply the kmeans function to inputs,
specifying k = 5 for five clusters, and setting the seed to a constant value so the analysis is replicable. The
resulting object cl not only contains diagnostics about the clustering process, but also the coordinates of
the centroids and the cluster assignment for each county (cl$cluster). Digging into the cl object, we can
calculate how many counties fall into each of the five clusters by tabulating cl$cluster as well as retrieve the
loss metric—the total cluster variance (cl$tot.withinss). Is this a good result? Why choose five clusters?
Why not two or 50?
Set seed
set.seed(123)

Apply clustering
cl <- kmeans(inputs, centers = 5)

Tabulate number of counties per cluster
table(cl$cluster)

Retrieve the Total Within Sum of Squares (TotalCluster Variance)
cl$tot.withinss

To ensure clusters are identified with a practical degree of rigor, we will search for the optimal value of k
by comparing mean silhouette widths as calculated using the silhouette function in the cluster library.
silhouette requires two inputs: the cluster assignment and a dissimilarity matrix. The former is an output
of kmeans whereas the latter is a distance matrix between all observations that can be calculated by applying
the dist function on the input variables.

The silhouette function calculates the silhouette width for each observation. To make comparisons between
each value of k, we instead need the mean silhouette width. Below, we illustrate how this calculation should
flow: (1) calculate the dissimilarity matrix, (2) calculate the silhouette and store to object sil, (3) calculate
the mean of silhouette values contained in the third column of sil.
Calculate dissimilarity matrix
dis <- dist(inputs)

Calculate silhouette widths
sil <- silhouette(cl$cluster, dis)

Calculate mean silhouette width
mean(sil[,3])

Optimizing k. To test dozens of values of k, it would be prudent to wrap the clustering and silhouette
procedure into a cohesive function. Not only would this keep the code concise and tidy, but it also allows
the optimization procedure to be applied and re-applied to other problems. We combine the k-means and

11.3. K-MEANS 225

silhouette functions into a single function km. The function requires input variables x and the number of
clusters k. In addition, it requires a dissimilarity matrix d. As d is the same for all scenarios of k, we only
need to calculate the dissimilarity matrix once and apply the same object to each iteration to save compute
time.
km <- function(x, k, d){

#
Calculate mean silhouette for a value of k
#
Args:
x = data frame of input variables
k = number of clusters
d = a dissimilarity matrix derived from x

cl <- kmeans(x, centers = k)
sil <- cluster::silhouette(cl$cluster, d)

Return result
return(data.frame(k = k, sil = mean(sil[,3])))

}

With km ready to go let’s test values of k ∈ {2, 30}, storing the mean silhouette for each k in the placeholder
data frame opt. Notice how the code is relatively compact and itself could be wrapped into an optimization
function as well.
Placeholder
opt <- data.frame()

Loop through scenarios
for(k in 2:30){

opt <- rbind(opt, km(inputs, k, dis))
}

By plotting the contents of opt, we reveal the shape of the silhouette curve for all tested values of k (see
Figure 11.5). Ideally, the curve will have a global maximum and is downward sloping as k increases. The
global maximum is k = 2, indicating that the US’ can be divided into two clusters that have distinctive
levels of tech activity, one with n = 526 and the other with n = 2611.

Are these clusters meaningful? Suppose one wanted to create a Buzzfeed list of the most educated counties
in the US. It is as easy as taking the proportion of people with a college degree in each county, then sorting
from most to least. What if the list were expanded to the most educated and populous? Or if income was
added in addition? Clustering can be treated as a way to bucket observations with similar values together,
effectively producing a rank. This is evident in Figure 11.5.

The scatter plots suggest that larger employment centers tend to also have higher concentration of tech
employment and greater incomes as well—not surprising given the trend toward urbanization. These resource
rich areas tend to bubble across all measures. Granted, these results are not causal, but are certainly sugges-
tive. In effect, the k-means algorithm provided an efficient strategy to partition better resourced communities
from ones that are less well-off.

Making use of clusters. How should these results be used? It depends on the audience. An economic
development authority does not need to compete with every county—it should focus on comparables. By
clustering all counties on their observable characteristics, economic developers can map their county to a
pool of similar counties. If the authority can articulate which other counties are competitors in its market
segment, then it can also craft offerings for prospective companies that distinguish itself from the rest.

A tech company searching for the site of its future headquarters may not want to pay for being in the most
expensive cities yet would want access to a reasonably sized, skilled tech labor force. k-means condenses
the data of competitiveness into a simple list of where tech is concentrated. The smaller of the two clusters

226 CHAPTER 11. CLUSTER ANALYSIS

5 10 15 20 25 30

0.
20

0.
30

0.
40

0.
50

(A) Optimizing k

k

M
ea

n
S

ilh
ou

et
te

 W
id

th

1.0 2.0 3.0 4.0
−4

−2
0

2

(B) Tech Employment and Education

log(% with BA)

lo
g(

%
 E

m
p.

 in
 T

ec
h)

10.0 10.5 11.0 11.5

−4
−2

0
2

(C) Tech Employment and Income

log(Median Income)

lo
g(

%
 E

m
p.

 in
 T

ec
h)

Figure 11.5: (A) Grid search for optimal k with respect to mean silhouette width, (B) and (C) Clusters for
select input variables bivariate plots-scaled by total employment.

contains n = 526 counties, which is comprised of iconic high-tech areas such as San Francisco and Santa
Clara in California as well as large cities such as New York City (New York City) and Seattle (King County,
WA). The same cluster finds less expensive and less densely populated alternatives like Durham, NC, and
Arlington, VA—both of which are growing centers of technical excellence. In essence, clustering can identify
smart alternatives to inform the selection process.

Despite these promising use cases, keep in mind there are limitations. From an ethical perspective, cluster
analysis based on the past performance of regions might be a self-fulfilling prophecy. Well-resourced areas
will continue to draw more attention and resources, ignoring smaller promising areas. Furthermore, clustering
on past data does not provide any indication of future performance of counties. For k-means, in particular,
the outputs are “flat”—cluster labels are one dimensional and ignores the rich context that shows how some
observations are more like some than others. Alternative methods might be more useful in capturing that
context. As we will see in the following section, hierarchical clustering is a step in that direction.

11.4 Hierarchical clustering
There is more to clustering than producing a cluster label. k-means assumes that an entire cluster can
be represented by the location of its centroid, but in so doing, we ignore one of the richest sources of
information: how points are related to one another. The linkages between points capture the relationship
between people, places, and events. It is within those links that we tell nuanced stories behind clusters, and
how one observation is related to any other. To capture the relationships among points, we turn to a more
sophisticated alternative known as hierarchical clustering.

Hierarchical clustering relies on the similarity between each observation and all other observations. Hier-
archical Agglomerative Clustering (HAC)—a common hierarchical clustering approach—groups togethers
observations in a greedy fashion, doing so iteratively until all observations are part of one mega cluster.4 By
agglomerating the data, one observation at a time, the algorithm catalogs how all points are related to one
another. These relationships are the scaffolding of the cluster analysis and can be visualized in the form of
a dendrogram (see Figure 11.6), a tree diagram that plots the relationship between all points scaled by a
measure of dissimilarity. The same information can be rendered in other formats borrowed from evolutionary

4Hierarchical clustering is technically comprised divisive and agglomerative clustering. The former is a top-down approach,
splitting a sample into smaller clusters until each observation is a singleton—reminiscent of decision tree learning. Agglomerative
clustering is a bottom-up approach, grouping together observations. Both algorithms are greedy, meaning they make the locally
optimal splitting or grouping decision in each iteration.

11.4. HIERARCHICAL CLUSTERING 227

biology such as phylogenetic trees, cladograms, and fan-style trees.

(A) Dendrogram (B) Cladogram

12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43
44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68
69

70

71

72
73

74

75
76

77

78

7980

81

82

83

84

85

86

87

88

8990

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106
107

108

109

110

111

112

113

114

115

116

117
118

119

120

121

122123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149
150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166167

168

169

170

171

172

173

174

175

176

177178

179

180

181

182

183

184

185

186
187

188

189

190191

192

193

194

195

196

197

198

199

200

(C) Phylogenetic Plot

12

3

4

5
6
7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40

41

42

4344

45

46

47
48

49

50

51

52
53

54
55

56

57

58 59

60

61

62

63

6465

66

67

6869
70

71

72
73

74

7576

77

78
7980
81

82

83

84

85

86

87

88

8990

91
92
93

94

95

96

9798

99

100

101

102

103

104

105

106107

108

109

110

111

112

113

114

115

116

117
118

119
120

121

321 221

124

125

126
127

128

129

130131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149150
151

152

153

154

155

156

157

158

159

160

161
162

163
164

165

166167
168

169

170

171

172

173

174

175

176
177178

179

180

181

182

183

184

185

186187188189

190191

192

193

194

195

196

197

198

199

200

(D) Fan Plot

12

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

798
0

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

10
1

102

103

104

105

10
6

10
7

108

10
9

11
0

111

112

11
3

114

11
5

116

117

118

119

120

121

12
2

12
3

124

125

12
6

127

128

129

13
0

131

132

13
3

134

135

13
6

13
7

13
8

139

14
0

141

14
2

143

144

145

146

147

148

149

150

15
1

152

15
3

154

15
5

156

157

158

159

160

161

162

16
3

164

165

166167

16
8

169

17
0

171

172

173

174

175

17
6

177178

17
9

18
0

181

182

18
3

184

185

186

187

18
8

18
9

19
0

19
1

192

193

194

195

19
6

19
7

198

19
9

200

Figure 11.6: Hierchical clustering can expose the underlying structure of data by measuring how every point
is connected to all others.

11.4.1 Under the hood
The HAC algorithm is a simple but exhaustive procedure. Like most algorithms, it is an iterative process:

1. Calculate distance d between all points. All points are first treated as their own cluster known as
singletons.

2. Group records until there is only one cluster:

– Calculate similarity s based on distance d between all clusters.
– Find the most similar pair of clusters.
– Merge the pair into a single cluster.
– Repeat process.

To illustrate HAC in action, let’s take a simple six-observation dataset as illustrated in Figure 11.7. In
iteration 0, there are a total of k = 6 clusters. In iteration 1, the two closest singletons are linked together,
resulting k = 5 clusters. The algorithm proceeds to iteration 2 in which the next closest pair of singletons
are linked, leaving k = 4 clusters. The process continues until all points are part of a single cluster. Since
the algorithm captures the linkages in each iteration, the total number of possible clusters is 1 ≤ k ≤ n.

There is a twist to the HAC algorithm: we need to define what constitutes the similarity between a pair of
clusters. Of course, Euclidean and Manhattan distance are favorites in measuring relatedness, but in HAC,
it is also necessary to define the linkage method that guides how the similarity is calculated.

Linkage methods. HAC relies on a family of linkage methods that dictate which points are used in similarity
calculations. The choice of linkage method not only changes how two clusters are merged, but influences
the computation complexity and time requirements. Linkage methods fall into two classes: distance-based
measures or variance-based measures.

Single linkage, or nearest neighbor linkage, calculates similarity s based on the closest pair of points, i and

228 CHAPTER 11. CLUSTER ANALYSIS

Iteration 0 Iteration 1 (k = 5) Iteration 2 (k = 4)

Iteration 3 (k = 3) Iteration 4 (k = 2) Iteration 5 (k = 1)

Figure 11.7: Each iteration of a modestly sized hierarchical clustering problem.

j, from a pair of clusters. In other words, first calculate the distance in terms of input variables X between
all pairs of points, then choose the pair of clusters with the shortest distance.

sij = min[d(Xi,Xj)]

The opposite of single linkage is complete linkage, which searches across all points in a pair of clusters to
represent distance in terms of the most dissimilar points (maximum distance).

sij = max[d(Xi,Xj)]

Single and complete linkage both rely on the extremities of clusters where outliers tend to be which at
times can create odd-looking, suboptimal results. Alternatively, linkages can focus on the center mass of
clusters where the most representative information is located. Average linkage considers more information,
distributing its weight across all points by averaging across all distance between all points in a pair of clusters:

sij =
I∑

i=1

J∑

j=1
d(Xi,Xj)

where I and J are the number of points in a pair of clusters. Another way to incorporate more information
from clusters is centroid linkage in which distance is calculated from the cluster centroids, X̄i and X̄i:

sij = d(X̄i, X̄j)

Distance, however, does not indicate that combining two clusters would be statistically meaningful. Ward’s
Method approaches clustering from the lens of an analysis of variance (ANOVA). From among all the prospec-
tive merges, two clusters are merged if it minimizes the increase in the sum of squares. This strategy is
equivalent to finding two clusters that are least statistically different from one another. Through a greedy
search, the merge cost is for all candidate merges are calculated, keeping the smallest value:

11.4. HIERARCHICAL CLUSTERING 229

sij = Δ(Xi,Xj) = ninj

ni + nj
||X̄i − X̄j ||2

where ni and nj are the sample sizes of a pair of clusters i and j. X̄i and X̄j are the cluster centers.

Each of these linkage strategies has different effects on the shape of the dendrograms —some resulting more
distinct clusters than others (see Figure 11.8). Using a random subset of the economic development data, we
find that single, centroid, and average linkages are inadequate for separating observations into clean clusters
at k = 4—one cluster contains the majority of observations. In contrast, Ward’s method and complete linkage
are able to break the sample into more equally sized clusters. Ultimately, the choice of linkage is a matter
of trial and error, but Ward’s will generally provide the more robust, statistically grounded solution.

0
1

2
3

4

(A) Single
0

2
4

6
8

10
(B) Complete

0
1

2
3

4
5

6

(C) Centroid

0
1

2
3

4
5

6
7

(D) Average

0
10

20
30

40

(E) Ward's

Figure 11.8: Effect of Linkage Methods on Clustering Results. Number of clusters set to k = 4.

11.4.2 In Practice
While dendrograms provide an intimate look inside the relationships within a dataset, HAC is computa-
tionally expensive in that as the sample increases, the amount of time required to complete the task grows
much faster. In computer science, Big O notation describes the time and memory complexity of an algorithm,
which in turn has a direct impact on whether a technique is feasible for a use case. The O refers to the “order
of the function” indicating the worst case for an algorithm’s computational performance. For example, O(1)
indicates an algorithm is able to complete a task regardless of the number of observations or inputs. O(n)
indicates that time required is a linear to the size of the data and inputs. O(n2) means the time requirement
grows faster then the number of observations in a dataset. Certain implementations of HAC have a time
complexity of O(n3), meaning that the algorithm will require a large amount of time for even a modest sized
dataset. Relying on HAC in a policy and strategy thus depends on the decision latency. Most datasets used
in policy are relatively small, but occasionally a larger set may require more time to process. If the audience
can wait for the outputs, it is well-worth the wait.

230 CHAPTER 11. CLUSTER ANALYSIS

11.4.3 DIY: Clustering time series
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch11-hca.Rmd.

How is the economy doing? Where should we focus our efforts? While these are vague questions, they are
common questions that policy makers struggle with. The questions imply the need for a comparison of the
economy against its historical performance in a time series—a fairly straightforward problem. But when it
is expanded to the where dimension, we suddenly must incorporate a geographic component that will easily
increase the complexity of the problem. In the United States, for example, a state-level analysis expands
the number of time series to 50, whereas a county-level analysis balloons to 3,100 time series. The challenge
when moving from a single time series to thousands of time series is the sheer amount of information that
needs to be concisely summarized in an informative, relatable manner. But maybe every county is not a
snowflake. Maybe each county can be viewed as part of an economic motif. Each county can be compared
with all other counties using the qualities of its time series (e.g., seasonal cycles, increasing or declining
trends, and irregularities), then counties that move similarly can be part of the same economic motif —
essentially identifying clusters. These clusters reduce the complexity of the data so that only a few distinct
profiles can form the basis of a concise economic analysis.

In this DIY, we illustrate how to apply hierarchical clustering to time series data to identify and articulate
behavioral motifs. It is an idea that can be widely applied to economic data. Clustering can help policy
makers understand that there is not just one type of economic growth—it is heterogeneous and some regions
may be more resilient than others. The approach can also be applied beyond economics to cyber-security to
identify common types of web traffic in order to monitor for unusual activity. Virtually any set of time series
can benefit from clustering.

We rely on the Quarterly Census of Employment of Wages (QCEW), a quarterly dataset of employment
and wages that represents more than 95% of US jobs. Collected by the US Bureau of Labor Statistics, the
data is one of the core data sources that tells the economic story of the United States, showing every level
of economic activity from the county level to the national top-line.5 While approximately 3,200 counties are
published in the QCEW, we illustrate the clustering on a subset of data, namely, mean quarterly employment
for California’s 58 counties.6 The dataset contains 100 quarterly observations from the first quarter of 1992
through the fourth quarter of 2016. The time series are provided in wide format, storing the date and time
index in the first two columns and the remaining 58 columns contain the county-level employment time
series.
Load QCEW data
load("data/qcew_cali_sa.Rda")

The hierarchical clustering process starts with constructing a distance matrix that relates all points to one
another. Rather than using the individual time series observations themselves, we can represent a time series
in terms of its relationship to all other time series using a Pearson correlation. Using the cor function, we
transform the 58-time series in the cali data frame into a 58 × 58 matrix of Pearson correlations. The result
is assigned to the matrix rho.

The HAC algorithm requires a distance matrix on which linkage methods can be applied—the current form
of the rho matrix does not fit the bill. Each county’s set of correlations can be viewed as coordinates that
indicate the location of one series relative to another series—not quite distance. The correlations need to be
rationalized as a measure of absolute distance, which can be accomplished by passing the rho matrix to the
dist function to construct the distance matrix.
Calculate correlation matrix
rho <- cor(cali[, -c(1:2)])

5The BLS does not consider QCEW to be a time series, but it contains useful information if treated as a time series.
6For ease of analysis, the authors have pre-processed the data. First, the data aggregate monthly records into average

quarterly records. Secondly, the data were also seasonally adjusted (SA), meaning that normal year-to-year cycles have been
extracted from the data leaving only trend and noise.

https://github.com/DataScienceForPublicPolicy/diys

11.4. HIERARCHICAL CLUSTERING 231

Convert into distance matrix (default is Euclidean)
d <- dist(rho)

The HAC procedure is neatly packaged into the hclust function and can accommodate a number of linkage
methods. At a minimum, two arguments need to be specified:

• d is a distance matrix (or dissimilarity matrix) from the dist function
• method is the type of linkage method that guides agglomeration, such as “single”, “com-

plete”, “average”, “centroid”, “ward.D”, among others. In this example, we apply the ward.D
method.

The resulting tree is stored in the object hc.
Create HAC tree
hc <-hclust(d, method = "ward.D")

With the tree grown, we can render a dendrogram. The HCA object can be directly plotted using plot(hc),
but given the large number of singletons, consider stylizing the dendrogram for ease of interpretation. Using
the dendextend package, the hc object is converted into a special dendrogram object to which styles can be
applied: the tree is cut into k = 8 branches that are color coded. The font size (“label_cex”) is also adjusted
for aesthetics. The resulting dend object is shown in Figure 11.9.
Load package
pacman::p_load(dendextend)

Set as dendrogram for plotting, find 8 clusters, label andcolor code each cluster,
Then resize the singleton labels
dend <-as.dendrogram(hc) %>%

color_branches(k = 8, groupLabels = TRUE) %>%
color_labels %>%
set("labels_cex", 0.5)

Plot dendrogram
plot(dend, font.cex = 1)

0
20

40
60

80

1 2

al
am

ed
a

lo
s.

an
ge

le
s

la
ke

yo
lo

co
nt

ra
.c

os
ta

so
no

m
a

m
on

o
tu

ol
um

ne
m

ar
in

ca
la

ve
ra

s
sh

as
ta

sa
n.

be
ni

to
te

ha
m

a

3 4

ke
rn

tu
la

re
im

pe
ria

l
ki

ng
s

el
.d

or
ad

o
ne

va
da

st
an

is
la

us
or

an
ge

sa
cr

am
en

to
bu

tte
sa

n.
jo

aq
ui

n
riv

er
si

de
sa

n.
be

rn
ar

di
pl

ac
er

su
tte

r
sa

n.
di

eg
o

so
la

no
ve

nt
ur

a
fr

es
no

m
ad

er
a

na
pa

sa
n.

lu
is

.o
bi

m
on

te
re

y
m

er
ce

d
sa

nt
a.

ba
rb

ar

5 6

si
er

ra
la

ss
en

si
sk

iy
ou

tr
in

ity
yu

ba
pl

um
as

de
l.n

or
te

al
pi

ne
hu

m
bo

ld
t

in
yo

7 8

co
lu

sa
gl

en
n

sa
n.

fr
an

ci
sc

sa
n.

m
at

eo
sa

nt
a.

cl
ar

a
m

ar
ip

os
a

am
ad

or
sa

nt
a.

cr
uz

m
en

do
ci

no
m

od
oc

Figure 11.9: Dendrogram of county employment patterns in California.

Extract and inspect clusters. How does one interpret the dendrogram in practice? The vertical axis
indicates how dissimilar two records are. A pair of singletons that are linked together near the bottom of the
plot are considered to be most similar, whereas clusters linked toward the top are farther apart. To retrieve

232 CHAPTER 11. CLUSTER ANALYSIS

k-number of clusters, we scan along the dissimilarity axis to identify a value at which only k links cross. For
example, k = 4 is associated with a dissimilarity score of approximately 10, and k = 8 is approximately 5.
Similar to k-means the optimal value of k can be found through the Elbow method or maximizing the mean
silhouette width.

For simplicity, let’s examine the case of k = 8 and compare employment patterns within each cluster. We
retrieve a vector of cluster assignments by applying the cutree function setting k = 8. So that the cluster
analysis can be easily tuned to other values of k without substantial editing, we soft-code the desired number
clusters to the object num_k. We then write the code so that the assumption will propagate to all subsequent
steps when the value of k is changed.
Number of clusters
num_k <- 8

Define groups
groups <- cutree(dend, num_k)

Small multiples are an effective way to communicate patterns when presented with a large amount of data.
The format presents a grid of small thumbnail-sized graphs that provide just enough information for the
viewer to make quick comparisons. All plots are packed relatively close together so the eyes do not need to
move far to detect patterns. If the HAC algorithm were successful at identifying clusters, all series within a
cluster should have visually similar trends. Otherwise, the analyst could tune the value of k until each cluster
is visually homogeneous. Our small multiples graph provide a visual summary of each cluster in the form of
a 8 × 11 matrix: eight rows of time series line plots—one row for each of k = 8 clusters, each containing at
most 10 plots with one additional column to label the cluster.

Setting a color palette. In theory, each cluster should be distinct from all other clusters. Choosing a visually
appealing color palette can emphasize distinctions and make it easier for the viewer to interpret results.
Using the brewer.pal function in the RColorBrewer package, we customize a color palette (“Set2”) with n
color steps. The color palette is stored in the object pal, which is a string vector of n = 8 hex-codes.
Set color palette
pacman::p_load(RColorBrewer)
pal <- brewer.pal(n = num_k, name = "Set2")

Laying out the small multiples. While ggplot2 is the typical visualization analyst’s preferred tool, we instead
use base R graphics for the small multiples. Before rendering the plots, we define the layout of the plot using
par: set the mfrow argument to contain 8 rows (num_k) and 11 columns (one for the cluster label and 10
for graphs). For all graphs to neatly fit, plot margins are adjusted such that only the top margin is given
one-inch of space.

With the canvas set, the time series graphs can fill each cell in the 8 × 11 grid. When dealing with multiple
plots on the same canvas, graphs are inserted into the grid from left to right, then top to bottom. The graphs
are laid out under five simple guidelines:

• Each row is a cluster.
• The first cell is a blank plot in which the cluster label and sample size are placed.
• The next ten cells in the row (second through eleventh cells) should contain plots or blank plots.
• The first ten counties are selected to represent a cluster, each of which is rendered as a minimalist line

graph in which axes and axis labels are suppressed.
• If a county has less than ten counties, the remainder of the row is filled with blank plots.

This process is repeated for all eight clusters and is efficiently plotted through a set of two loops and an
if-else statement.
(1) Set plot grid
par(mfrow = c(num_k, 11), mar = c(0,0,1,0))

11.4. HIERARCHICAL CLUSTERING 233

Loop through all groups
for(i in 1:num_k){

Get columns where elements in ‘groups‘ matches i
Add +2 to retrieve column index in ‘cali‘ data frame
series <- which(groups == i) + 2

Create blank plot, then fill with the cluster label
And cluster sample size
plot.new()
text(0.5, 0.55, i, cex = 1.5, col = pal[i])
text(0.5, 0.05, paste0("(n = ", length(series), ")"),

col = pal[i])

Loop through the first 10 counties in each cluster
for(j in series[1:10]){

Some clusters have less than 10 counties
If j is NA (< 10 counties), fill with a blank plot
If j has an ID, plot the time series
if(is.na(j)){

plot.new()
} else{

plot(cali[,j],
col = pal[i], main = colnames(cali)[j],
type = "l", axes = FALSE,
font.main = 1, cex.main = 0.8)

}
}

}

What do these plots tell us? As shown in Fig. 11.10, these clusters illustrate economic motifs. Each cluster
has a sort of economic rhythm that distinguishes its growth trajectory likely due to the industries that
operate within. Scanning across each row and between rows, it is apparent that each clusters are different
from one another. Some appear to continuously grow while some fluctuate. Cluster 6 experienced booms
and busts, possibly due to the influence of the booms and busts of technology companies concentrated in
San Francisco and Santa Clara. Cluster 8 is comprised of Sierra County that has experienced a long steady
decline in employment, likely driven by population loss. In stark contrast is Cluster 7’s steady upward
growth throughout the dataset regardless of contractionary periods. In between are clusters 2 and 3 that
have experienced volatility in employment, most of which have somewhat rebounded in recent years.

Making use of clusters. From a policy perspective, these clusters can serve as a baseline to inform interventions
tailored to each cluster’s profile. A declining cluster (Cluster 8) should not receive the same policy treatments
as a well-resourced cluster (Cluster 6) or a continuously growing cluster (7). At the same time, we do not
need to craft 58 distinct policy interventions. With clustering, we can move beyond a one-size-fits-all and be
more responsive to constituents’ needs.

From a research perspective, these clusters can improve the quality of models. Economists and financial
researchers often estimate econometric models using panel time series data. A common strategy employs a
fixed effects regression that allows each panel (e.g., county, state) to have its own intercept but assumes that
all panels have the same relationship with input variables. For example, imagine if employment in Sierra
County was assumed to have the same relationship with inputs as San Francisco County despite differences
in growth trajectories. The model may in turn provide misleading coefficient estimates, but also biased
predictions. HAC can help identify statistically defensible ways of splitting a panel into smaller groups that
exhibit similar behavior and improve the quality of research.

234 CHAPTER 11. CLUSTER ANALYSIS

1
(n = 6)

alameda contra.costa lake los.angeles sonoma yolo

2
(n = 9)

alpine del.norte humboldt inyo lassen plumas siskiyou trinity yuba

3
(n = 5)

amador mariposa mendocino modoc santa.cruz

4
(n = 21)

butte el.dorado fresno madera merced monterey napa nevada orange placer

5
(n = 7)

calaveras marin mono san.benito shasta tehama tuolumne

6
(n = 5)

colusa glenn san.francisc san.mateo santa.clara

7
(n = 4)

imperial kern kings tulare

8
(n = 1)

sierra

Figure 11.10: Comparison of time series by employment cluster in California.

11.5 Beyond this chapter
In this chapter, we illustrated how two clustering techniques can exposure the structure of otherwise amor-
phous data. k-means and hierarchical clustering are simple and intuitive but are best suited for exploratory
applications to inform hypotheses and narratives. Indeed, these techniques are only the tip of the unsuper-
vised learning iceberg. We close this chapter with a discussion of further areas of study.

The choice of method. When working with clustering, a common mistake is to choose a technique out
of convenience. Both k-means and HAC are hard clustering techniques in which each point is placed into
one and only one cluster. In policy settings where insights need to be clear cut, hard clustering is a safe
choice for the sake of transparency. The simplicity of k-means excels when an application requires a short
computation time or when the dataset has a large number of observations; However, the technique falls short
in its ability to produce replicable, consistent results from one model run to the next. In contrast, the more
computationally exhaustive HAC approach can achieve more stable results; However this comes at the cost
of longer computation time.

Hard clustering could oversimplify the patterns in the data. For example, a Supreme Court justice can be a
swing vote—sometimes siding with more liberal opinions and sometimes with conservative opinions. Placing
the swing vote justice in one cluster over an another may be unreasonable. Soft clustering takes an alternative
perspective: any data point has some probability of belonging to two or more clusters simultaneously. These
techniques, such as Density-based spatial clustering of applications with noise (DBSCAN) and Gaussian
Mixture Models, provide greater flexibility, but their complexity make them less popular in pragmatic policy
settings. Nonetheless, soft clustering can offer more realistic representations of latent clusters. For further
reading on these alternative clustering techniques, consider the following literature:

• Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. “A density-based algorithm
for discovering clusters in large spatial databases with noise”. Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (KDD-96): 226–231.

11.5. BEYOND THIS CHAPTER 235

• Frühwirth-Schnatter, Sylvia. 2006. “Finite Mixture and Markov Switching Models”. Springer-Verlag
New York.

Dimensionality. High dimensionality poses a challenge for clustering techniques. Because these techniques
do not target a known pattern as in supervised learning, an algorithm cannot easily identify the most
important variables and thus places equal weight on all inputs. As the number of variables increases, the
influence of each variable is diluted and can lead to unstable or suboptimal results.

To manage high dimensionality requires a dimensionality reduction strategy. Recall the “Flag and Family”
and “Tax and Terrorism” voters from this chapter’s opening story. These conceptual labels are derived from
interpreting summary statistics for each identified cluster in a dataset. In these contexts, a data scientist
could employ a pragmatic dimensionality reduction strategy: use only variables that have some intuitive
connection to the phenomenon of interest. This, of course, introduces a degree of subjectivity but can be
explained away given reasonable intuition.

A more data-driven strategy involves principal components analysis (PCA). When two or more variables are
highly correlated, they contain similar and sometimes redundant information. PCA offers the possibility of
summarizing a set of input variables as a smaller set of principal components—a set of index variables that
each represent a distinct pattern in the data. For example, a high dimensional economic dataset might find
that certain employment variables will move together while monetary policy has a separate distinct theme.
In applied settings, PCA is a convenient strategy to engineer new concise, features for prediction projects,
serve as indexes in dashboards that summarize a complex concept, among others. The quality of the principal
components, however, is still wholly dependent on the quality of data and the variety of signal—there is no
guarantee that PCA and any other clustering technique will be effective. Nonetheless, consider reading the
following article:

• Lever, Jake, Martin Krzywinski, and Naomi Altman (2017). “Principal component analysis”. Nature
Methods 14(7). pp. 641-642. https://doi.org/10.1038/nmeth.4346.

For a more hands-on treatment, An Introduction to Statistical Learning (James et al. 2014) offers a concise
introduction to PCA using R.

https://doi.org/10.1038/nmeth.4346

Chapter 12

Spatial Data

12.1 Anticipating climate impacts
Climate change has become an issue at the forefront of society’s collective consciousness. Foreseeing the
challenges that lie ahead, the United States passed the Global Change Research Act of 1990 that requires
the U.S. Global Change Research Program (USGCRP) to deliver a report to Congress and the President
to provide a comprehensive, integrated scientific assessment of the effects of global change every 4 years.
The concept of global change is expansive, dealing with changes to the Earth’s system, such as oceans,
atmosphere, oceans, among others. Changes in these foundational elements of life have profound impacts on
all things in society such as agriculture, energy production and use, land and water resources, transportation,
human health, and biological diversity (U.S. Global Change Research Program 1990). The principal output
of the USGCRP is the National Climate Assessment—a report that brings together the best scientific minds
and policy makers to make sense of the state of current research on climate.

One of the key areas of climate change is the effect on sea levels. According to the Fourth National Climate
Assessment released in 2018,

Global average sea level has risen by about 7–8 inches (about 16–21 cm) since 1900,
with almost half this rise occurring since 1993 as oceans have warmed and land-based
ice has melted. Relative to the year 2000, sea level is very likely to rise 1 to 4 feet
(0.3 to 1.3 m) by the end of the century. Emerging science regarding Antarctic ice
sheet stability suggests that, for higher scenarios, a rise exceeding 8 feet (2.4 m) by
2100 is physically possible, although the probability of such an extreme outcome cannot
currently be assessed. (U.S. Global Change Research Program 2018)

While the trends are worrying, the implications of these sea-level changes are hard to fathom. How can
scientists make these trends more real? Suppose we had more certainty—what would these trends mean for
society? Digital Elevation Models (DEMs) can be used to approximate the height of the Earth’s surface
relative to the ocean. Then, the surface of the Earth can be “filtered” to areas with the greatest risk of
inundation given different levels of sea-level rise. This is exactly what the Centers for the Remote Sensing of
Ice Sheets (CReSIS) researched to make sense of the potential sea-level rise crisis.1

The results are quite striking. As seen in Figure 12.1, even a meter increase would result in a large land loss
of the Mississippi Delta, significant land loss in the Netherlands and in the Amazon Delta (Rowley et al.
(2007), Li et al. (2009)). To put the starkest scenario (+6 meters) into context, Aschwanden et al. (2019)
finds that the entire sheet would likely melt by the year 3000, causing the sea level to rise by 5.1m to 7.0m.

Incorporating the spatial dimension of climate change transforms abstract scientific knowledge by giving
it context. This is among the many benefits of Geographic Information Systems (GIS)—a field specialized

1To access maps from CReSIS, visit https://cresis.ku.edu/content/research/maps.

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_12

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_12&domain=pdf
https://cresis.ku.edu/content/research/maps
https://doi.org/10.1007/978-3-030-71352-2_12

238 CHAPTER 12. SPATIAL DATA

Figure 12.1: Estimates of land loss under one meter and six-meter sea-level rise scenarios. Courtesy of the
Centers for the Remote Sensing of Ice Sheets (CReSIS).

in the capture, storage, processing, and retrieval of spatial data (i.e., data about geography and spatial
relationships). The inundation maps can be used for much more than shading in portions of the Earth. In
fact, emergency services use the maps to identify potentially vulnerable populations and develop response
plans. Real estate developers use the maps to prioritize areas for development.

Maps convey geographic relationships between people, policies, places, and other objects. By incorporating
spatial data, a well-made and esthetically pleasing map can be extraordinarily helpful in communicating
policy implications. However, maps are only one tool in the toolbox of spatial data analysis. Consider these
five problems in public policy:

• Find the ten neighborhoods in a city with the longest fire department response times.
• Use real-time satellite imagery to detect early warnings of forest fires.
• Detect changes in high-resolution satellite imagery that suggest building additions that do not match

official building permits.
• Estimate the impact of bar openings on nearby crime, business patterns, and property values.
• Determine whether low-income households face a higher risk of sea-level rise.

The applications of data with a spatial dimension are profound and afford decision makers with a tangible
dimension on which to direct resources—we can infer and identify where we should act to affect change.

What goes into spatial data? In general, the data should include attributes that place an observation (or
objects) in space —somewhere on the Earth or elsewhere. Often, these attributes are two variables that
place the observations on a grid, for example, latitude and longitude (though any x and y will work). Other
times, elevation (or altitude) of the observation adds another dimension. The spatial dimension shows how
observations are connected to one another in space or even a k-dimensional space.

As spatial data availability continues to grow in public sector, data scientists will develop methods to better
harness, represent, and understand the complex spatial relationships inherent to and underlying public policy.
In this chapter, we provide a primer on spatial data with an emphasis on wrangling and shaping. We start
with an introduction to two types of spatial data, then discuss how each type of data is structured and how
to work with it. With the foundations laid, we show how to conduct geo-processing to extract meaning from
spatial data.

12.2. CLASSES OF SPATIAL DATA 239

12.2 Classes of spatial data
Spatial data broadly fit into two categories: objects and fields.

Objects are variables that are discrete, disconnected items like cities, building footprints, property lines,
rivers, or road networks. Governments need to operate, manage, and maintain their physical assets and often
rely on object data to keep track of their operations. In Figure 12.2, for example, we see two sets of objects.
Map (A) plots the extensive roadway network that is maintained by Highways England. As roads can be
thought of as sets of connected line segments, the roadway network is recorded as object data in Highway
England’s Pavement Management System (Highways England 2020). Map (B) shows a selection of building
footprints in Washington, D.C.—a useful dataset for any city that is interested in city planning. Objects
require sets of points to define vertices that, when combined, create geometric shapes such as roads and
buildings.

(A) Highways in England (B) Washington, D.C.

Figure 12.2: Two examples of object data: (A) Highway networks in England and (B) Building footprints for
Washington, D.C.

Fields represent spatially continuous concepts like temperature, humidity, air quality, or soil quality—
concepts that take on values everywhere throughout space. Earth science data such as climate data are
recorded as fields. For example, Figure 12.3 plots maximum daily temperature in the United States on 24
July 2018. The gradation in the colors represents temperatures at equally spaced locations on the Earth’s
surface. Indeed, the southwestern border of the United States is particularly hot during the summer months
while the mountain ranges tend to be quite cool.

As continuous fields and discrete objects are conceptually different, we use different classes of spatial data to
analyze them. To quantify continuous fields, we use rasters—a format that resembles a grid, while discrete
fields are represented as vectors to store geometric shapes.

12.3 Rasters
Rasters are grids. Each grid cell of a raster is associated with a value that summarizes the portion of the
field contained in that grid (raster) cell. We can think of rasters as discretized or pixelated versions of a
continuous field.

Rasters are defined by their extent (the swath of space that they cover) as well as their resolution (the
size of the grid cells). When a raster’s cells are small, it is considered to be high-resolution, which should
contain enough quality information to characterize any field. The drawback, however, is that higher resolution
requires larger file sizes, which in turn increase the time needed to process and render. Low-resolution rasters
(large raster cells) can provide a decent approximation of fields whose values do not change much at smaller
scales. However, as illustrated in Figure 12.4, low-resolution rasters can miss potentially important variation

240 CHAPTER 12. SPATIAL DATA

50
60
70
80
90
100
110
120

M
ax

. T
em

pe
ra

tu
re

 (
°F

)

Figure 12.3: Maximum daily temperature in the United States on 24 July 2018.

when that variation occurs at a very fine, local scale. Depending upon the use case, missing out on the fine,
hyper-local variation may not matter to your project—or it could mean certain failure for the entire project.

High resolution Low resolution

Figure 12.4: Comparing high- and low-resolution rasters. The raster on the right is approximately 1 km
resolution; the raster on the left is approximately 200 km resolution.

At the heart of it, rasters boil down to a pair of coordinates with an attached value. The value denotes the
raster’s representation of the field within the grid cell centered at the coordinates. If we think back to the
temperature map of the United States, each pixel in the photograph contains a coordinate pair for a location
on the Earth plus a temperature value. For example, consider a simple raster with 15 total cells. We can
write it as a data frame with 15 rows and 3 columns—two columns for coordinates and one column for the
value.

simple_df <- data.frame(x = rep(1:5, 3),
y = c(rep(1, 5), rep(2, 5), rep(3, 5)),
value = c(1:5, 2:6, 3:7))

The three-column data frame can be treated like a raster—think of it as reshaping the x as rows and y as
columns in a spreadsheet, filling in the intersections with the value. The value in (x = 5, y = 3) is 7, which
is greater than the value in the next row below (x = 5, y = 2), which is 6. When tabular data is placed in a
spatial grid, it can be visualized as a heat map as illustrated in Figure 12.5.

In R, the conversion of data frames to rasters relies on the rasterFromXYZ function (raster package). In the

12.3. RASTERS 241

Figure 12.5: Visualizing the data frame when converted into raster format.

snippet below, we apply the function to the data frame simple_df using a forward-pipe operator (magrittr
package). As the object simple_raster has been converted to a "RasterLayer" class, R can plot the values
in simple_raster as a grid, using their attached coordinates.
Load raster package, a color palette, and magrittr
pacman::p_load(raster, viridis, magrittr)

Convert from data frame to raster, applied via forward-pipe operator
simple_raster <- simple_df %>% rasterFromXYZ()

Render raster using magma color palette
plot(simple_raster, col = magma(1e3), box = F, axes = F,)

12.3.1 Raster files
Rasters can be stored in any format that can represent space as a grid. A CSV can do the trick for simple
problems, but lacks the ability to store context and requires specialized knowledge to transform tabular values
into a grid. For imagery (e.g., photographs) and remote sensing data (e.g., radiometer data), photographic
formats like TIFFs and JPEGs are quite effective for preserving the relationship of grid cells, although the
latter can lose precision of data if compressed. Ordinary imagery files also lack context—where was the
photograph taken and what part of the Earth does it represent?

For this reason, geospatial raster files tend to have specialized metadata to help retain context. For example,
GeoTIFF format combines TIFF imagery with metadata that indicates what part of the Earth’s surface the
photograph covers, along with other geographic data.

Raster formats tend also to be developed with specific domains in mind. In meteorology, data on concepts
such as precipitable water can be stored as GRIdded Binary or General Regularly distributed Information
in Binary form (GRIB).2 For storing complex data about the Earth system, a favorite of earth scientists
is NetCDF (Network Common Data Form)—the common choice for climate data. Whatever the raster file
format may be, all formats require some specialized logic to open and make sense of the data.

2The earth and planetary science communities tend to fashion creative acronyms from arbitrary letters. For example, one of
NASA’s asteroid satellite missions was called OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security,
Regolith Explorer) while a specialized algorithm for astronomy was named GANDALF (Gas AND Absorption Line Fitting
algorithm).

242 CHAPTER 12. SPATIAL DATA

12.3.2 Rasters and math
Mathematical operators can be applied to rasters, treating them like mathematical matrices. We can think
of any field in a raster as any ordinary variable xk. Thus, if we would like to apply a scalar (e.g., a × xk),
square a variable (e.g., x2

k), or combine identical size rasters (e.g., x1 + x2), R can make it happen.

For example, to square the values of simple_raster, we can apply R’s exponential operator (ˆ2), i.e.,
simple_rasterˆ2. This particular type of raster math can prove useful when converting between units (e.g.,
changing between Celsius and Fahrenheit). In other cases, raster math can identify cells that are above (or
below) a cutoff. By creating a mask, we can filter data based on their value. Other times, we may need to
combine multiple rasters—perhaps to calculate an average, sum rasters to find a total, or combine a measure
and a population raster to get per-capita measure.
Square
plot(simple_raster^2, col = magma(1e3))

Create a mask
plot(simple_raster > 4, col = magma(1e3))

Apply the mask to extract cells that meet criterion
plot(simple_raster * (simple_raster > 4), col = magma(1e3))

When working with raster math, we should keep three caveats in mind:

1. To compute summaries of rasters in R, we need to use the cellStats() function from the raster
package. For example, if we want to find the minimum value in the raster simple_raster, then we
should use cellStats(x = simple_raster, stat = min).

2. To compare a grid cell’s value across equally sized rasters, first create a stack of rasters using the
stack() function in the raster package. A raster stack is exactly what its name applies—a stack of
raster files, where each layer is an individual raster. Once doing so, apply min, max or other summary
statistics functions to the raster stack. The results will be cell-level summaries in raster form.

3. To apply mathematical and statistical operations to rasters and stacks, the rasters need to “conform”
(match up), meaning that they need to have identical extents and identical resolutions.

While raster math can produce useful results, how do we convert back into data frame for general data
science use cases? Simply apply as.data.frame. By default, the function only returns the values of the
raster without the coordinates. However, when enabling the optional argument xy = T, the resulting data
frame will be furnished with both values and their coordinates.
Converting raster to data frame (’xy = F’ by default)
simple_raster %>% as.data.frame()

Converting raster to data frame (’xy = T’)
simple_raster %>% as.data.frame(xy = T)

With these basic raster operations, we can unlock the signal in satellite imagery, photographs, and other
gridded data.

12.3.3 DIY: Working with raster math
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch12-raster-math.Rmd.

Let’s work through some examples using some simulated data.3 In the raster_simulate.Rda file, we have
simulated four rasters of 50× 50 cells: r1, r2, r3, and pop_r. We have plotted all four rasters in Figure 12.6.

3The data used to simulate these rasters is available on Github (https://github.com/DataScienceForPublicPolicy/build-
simulation-data) under raster-simulation.Rmd.

https://github.com/DataScienceForPublicPolicy/diys
https://github.com/DataScienceForPublicPolicy/build-simulation-data
https://github.com/DataScienceForPublicPolicy/build-simulation-data

12.3. RASTERS 243

load("data/raster_simulate.Rda")

r1 r2 r3 pop_r

Figure 12.6: Four simulated raster files: r1, r2, r3, and pop_r.

If we imagine that r1, r2, and r3 are the same variable over time for a fixed geographic area, we may be
interested to know the mean value in each cell. To find the mean value of each cell across the three rasters,
we have a two options:

1. Sum the rasters and then divide by three: (r1 + r2 + r3)/3.
2. Create a stack and then take the mean: stack(r1, r2, r3) %>% mean().

When we implement both options, we can test if these yield the same result using all.equal—they do.
Method 1: Sum then divide
r_mean <- (r1 + r2 + r3) / 3

Method 2: Stack and mean
r_mean_alt <- stack(r1, r2, r3) %>% mean()

Compare
all.equal(r_mean, r_mean_alt)

We can elaborate Method 2 to find other summary statistics for each cell such as the maximum and minimum.
Below, we apply max and min to the raster stack in order to find the range.
Find each cell’s maximum across the rasters
r_max <- stack(r1, r2, r3) %>% max()

Find each cell’s minimum across the rasters
r_min <- stack(r1, r2, r3) %>% min()

Range
r_range <- r_max - r_min

It may also be necessary to normalize a raster by another raster. For example, divide r1 by pop_r (perhaps r1
contains income and pop_r contains population—then r1 divided by pop_r would yield income per-capita).
We can perform division by using R’s arithmetic operator for division (/).

r_div <- r1 / pop_r

When we render these results in Figure 12.7, it is clear that raster math is quite powerful—we were successful
in extracting patterns that would be otherwise locked away in a data frame.

244 CHAPTER 12. SPATIAL DATA

Mean Maximum Division Range

Figure 12.7: Four outputs from raster math calculations.

12.4 Vectors
Just as we represent and analyze fields using raster data, we portray discrete objects with vectors. At their
core, vector data are simply groups of ordered points—each point has a coordinate. We can divide vector
data into three broad categories:

1. Points: each group has exactly one point.
2. Lines: each group has multiple, ordered points.
3. Polygons: each group has multiple, ordered points, and the first and last points are the same (closing

the polygon).

In Figure 12.8, we plot examples of the three types of vectors. Each of the three types of vector data—
point, line, and polygon—is made up of underlying points. For lines and polygons, the ordering of the points
matters: by connecting the dots in different orders, we would clearly find different lines or polygons. Polygons
are lines that have been closed off by joining the first and last points. This closure leads the polygon to have
an enclosed area, whereas a line does not have an area—just a length. To summarize once more: Polygons
and lines boil down to collections of points.

(A) Point (B) Line (C) Polygon

Figure 12.8: Example of point, line, and polygon vector objects.

12.4.1 Vector files
A vector file must store the geometric data of an object, have a framework to make sense of the geometric
shapes, and have an easy way to affix attributes to each object. While there are a variety of vector data
formats in use, three stand out:

• CSV. A single CSV file is well suited to carry the geographic coordinates about points along with their
attributes. While polygon and line data could be stored in a CSV, a non-trivial amount of processing

12.4. VECTORS 245

would be required to accurately string together coordinates making the format only ideal for point
data. However, attributes relating to a polygon or line could be stored in a CSV without the geometry
data.

• Shapefile. A shapefile is a geospatial vector data format that can support points, lines, and polygons. It
is a collection of three types of files that contain the geometry (.shp) and attributes (.dbf) as well as
an index file (.shx) to make navigation between vector objects as seamless as possible. If the collection
of files is missing one piece, the shapefile is inoperable. While it is a common format, shapefiles tend to
be bulky and are often used in conjunction with specialized software such as ArcGIS (proprietary) and
QGIS (open source)—both require some specialized knowledge of GIS. In R, shapefiles can be loaded
using the sf package.

• GeoJSON. An alternative to shapefiles is GeoJSONs. Like shapefiles, GeoJSONs can support multiple
types of vectors but have been developed to be more flexible and open.4 By taking advantage of JSON
format—the data format of the internet—GeoJSONs make it easy to transmit and use vector data in
web applications and any data-driven software.

As public policy organizations often rely on CSVs and shapefiles, we primarily focus on these data formats.

12.4.2 Converting points to spatial objects
Because of their importance in spatial data analysis, one must understand how to transform a set of points—
perhaps from a CSV—into a spatial object. We demonstrate this process using the example of Active Fire
Data derived from readings from NASA’s MODIS instrument for the period of February 10th to 17th, 2020.5
Every time NASA’s Terra and Aqua satellites fly overhead, the radiometer data can be used to detect
fires—certain pixels will exhibit a certain level of brightness and color. Earth scientists have developed
algorithms to automatically detect active fires, which are useful for monitoring situations across the globe.
The modis-fire.csv file contains latitude, longitude, brightness of fire, among other measures (NASA
Earth Science 2019).
Read file
modis <- read.csv("data/modis-fire.csv")

Check that data was imported
modis

To work with vector data, we use the sf package.6 For the task of converting this data frame to an object
that R recognizes as a spatial object, we use the function st_as_sf(), calling the coords argument to
indicate which column is the horizontal dimension (longitude, otherwise the x coordinate) and which
column contains that vertical dimension (latitude, otherwise the y coordinate).

Pro Tip: The order of the coordinates in a vector file is typical source of error. The x coordinate usually is first
and should correspond to longitude while the y coordinate comes second and corresponds to latitude. If we pass
coordinates to the coords argument in the wrong order, the data will be mapped with a rather odd rotation.
A straight forward method of checking if the data was imported correctly is to plot it.
Load sf package
pacman::p_load(sf)

Convert modis to ’sf’ object
modis <- modis %>% st_as_sf(coords = c("longitude", "latitude"))

Inspect the new ’sf’ object

4Shapefiles were originally developed for use with a proprietary software. GeoJSON was developed to be an open-by-default
format.

5Data can be obtained from NASA Earthdata: https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/
active-fire-data.

6sf stands for simple features. See the sf project’s main page (https://r-spatial.github.io/sf/index.html) for more information.

https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://r-spatial.github.io/sf/index.html

246 CHAPTER 12. SPATIAL DATA

class(modis)
modis

A couple of observations. The class of the modis object contains both its previous class (i.e., data.frame)
and a new one, sf. This double identity is quite useful: we can perform many spatial operations using
sf objects while being able to perform standard data.frame operations (e.g., all of the friendly functions
from the tidyverse). In addition, when inspecting the new modis object, the columns that contained our
coordinates have “disappeared” and have been replaced with a new column named geometry. Any time we
create an sf object, we should expect a geometry column that contains the coordinates for each entry in
your dataset. In our current example, each fire detection is represented by a single point, so the geometry is
a single point. But, as we will see in future examples, when each row of our dataset is a polygon, each entry
in geometry will be a set of points.

While base R is equipped to plot a map of modis, we can leverage ggplot2 for more a customizable, visually
satisfying experience. In the case of vector files, geom_sf can handle sf objects to render a map as shown
in Figure 12.9. The result suggests a world on fire, but not to worry—the points overstate the size of the
blazes.

ggplot(data = modis, aes(color = brightness)) +
geom_sf(alpha = 0.3, size = 0.3) +
scale_color_viridis_c("Brightness", option = "plasma") +
guides(color = guide_colourbar(barwidth = 20, barheight = 1)) +
theme_void() + theme(legend.position = "bottom")

Figure 12.9: Brightness of active fire detections from MODIS instrument (Feb 10 to 17, 2020).

12.4.3 Coordinate Reference Systems
The MODIS fire detections are recorded in decimal degrees—expressing location as degrees from the equa-
tor and prime meridian. In particular, MODIS coordinates are recorded in World Geodetic System 1984
(WGS84)—just one of many coordinate reference systems (CRS) that allow all positions on Earth to be
recorded in a standardized way. As the name suggests, the coordinate reference system indicates how to
interpret and treat the coordinates of a point. While standard latitude and longitude are common, other
CRS represent location in terms of distances (e.g., meters, feet) from some central point. Furthermore,
the CRS indicates whether the coordinates use some sphere-like object as the surface or whether they are
projected onto a flat surface.

For example, New York City’s spatial data are often recorded in:

NAD83_StatePlane_NewYork_LongIsland_FIPS_3104_USFeet

12.4. VECTORS 247

Let’s break this down. NAD83 is the North American Datum of 1983—a set of geographic reference points
that identify the precise position of locations on the Earth. State Plane refers to one of 124 geographic zones
in which coordinates from a spherical model (NAD83) are projected and represented in terms of a Cartesian
coordinate system. In effect, a curved surface is flattened onto a plane. New York-Long Island is a specific
State Plane zone. The coordinates are not represented in decimal degrees, but instead as feet relative to a
point in the State Plane zone.

The choice of the projection can lead to quite dramatic changes to the spatial data. In Figure 12.10, we
render three maps of the US using different projections, illustrating the importance of the CRS. In short,
geographic data can be quite complicated and having good metadata plays an important role in making the
data useful.

25
30
35

40

45

50

25
30
35
40
45
50

25
30
35
40
45
50

−120 −100 −80 −120 −100 −80 −120 −100 −80
Longitude Longitude Longitude

La
tit

ud
e

La
tit

ud
e

La
tit

ud
e

Mercator Orthographic Azimuthal Equal−Area

Figure 12.10: Various examples of map projections applied to the United States.

Setting CRS. When importing data from a CSV or other generic file format, the data will not contain the
CRS. If the data hygiene practices are strong, then we can simply assign a CRS to a dataset. In the case
of MODIS fire detections, NASA data managers are quite good and we know that the appropriate CRS is
the WGS84 projection. In fact, many decimal degree coordinates will be WGS84 and is a reasonable default
assumption.7

What do we do with that information? We need to assign it to the data to give it the context for R to make
use of it. In R, there are two ways to specify a CRS:

• The EPSG: A numeric code that indicates the CRS.
• The proj4 string: An alphanumeric code that describes the coordinates, projection, and spherical

model associated with the coordinates. For example proj4string: +proj=longlat +ellps=WGS84
+no_defs.

The st_set_crs function attaches the desired CRS, ensuring that both EPSG and proj4 appear. Below, we
specify only the EPSG and R takes care of the rest.

modis <-st_set_crs(x =modis, value = 4326)

As illustrated in Fig. 12.10, each CRS makes vastly different assumptions about how to treat spatial data.
When we compare objects that use different CRS’, then they all must be transformed into the same CRS.
Otherwise, the coordinates will not align or even appear on the same mapping space and calculations will
return nonsensical values.

The transform process is known as re-projection, which requires computing the geographic transformations
from one CRS to another. Do not simply set a different CRS using st_set_crs. Instead, a special transfor-
mation is required.

Changing CRS. Suppose we would like to calculate distances between fires. The challenge is that our current
CRS (WGS84) is measured in degrees, and degrees are not constant throughout the globe. For example, at
the equator, when you move 1 degree west, you move approximately 111 km. However, 49 degrees north of
the equator (the border between the United States and Canada from approximately Minnesota/Manitoba

7Before assuming WGS84, check the range of values. Decimal degrees will vary between specific ranges: latitude in degrees
is -90 and +90 while longitude is between -180 and +180.

248 CHAPTER 12. SPATIAL DATA

to Washington/British Columbia), moving 1 degree west is only 72.9 km. On the other hand, the distance
between latitudes stays a constant 111 kilometers.8

Why does any of this matter? Because when we calculate distances in longitude and latitude, we assume
that one degree in the horizontal direction (one degree longitude) equals one degree in the vertical direction
(one degree latitude), which simply is not true (unless we are exactly on the Equator).

So what can we do? For relatively small areas, we can project the Earth onto a flat surface and then use a
coordinate reference system in meters (or another constant distance unit). The Universal Transverse Mercator
(UTM) offers one such system. Specifically, UTM divides the earth in 60 zones—6 degrees wide split above
or below the Equator. Each zone receives its own coordinate system. Chicago, for example, sits in UTM
zone 16N, which we can specify via EPSG code 32616 (with WGS84 datum). To change from one CRS to
another, we need to transform the spatial object—re-project into the new model of Earth and coordinate
system. For this task, we use st_transform. As a reminder, simply changing the CRS without re-projecting
into another CRS will yield disastrous results.
Re-project
modis2 <- st_transform(x = modis, crs = 32616)

Check CRS for both objects
modis2 %>% st_crs()

12.4.4 DIY: Converting coordinates into point vectors
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch12-create-vectors.Rmd.

In this DIY, we put into practice steps for working with point vectors, importing two CSVs of point data
and preparing them as spatial vectors. Both datasets are drawn from the domain of public safety in the US
city of Chicago:

data/chicago-police-stations.csv

• Locations of n = 23 police stations
• Includes district, latitude, longitude, and several other variables

data/chicago-crime-2018.csv

• Reported crime incidents (n = 267687) by the Chicago Police Department in 20189
• Includes date, latitude, and longitude (at block level), type/description of crime, whether an arrest

was made, and many other variables

Below, we begin with importing the two CSV files, then clean the headers with the clean_names function
(janitor package).
Load packages
pacman::p_load(dplyr, janitor, sf, magrittr)

Load the datasets and clean names
station_df <- read_csv("data/chicago-police-stations.csv") %>% clean_names()
crime_df <- read_csv("data/chicago-crime-2018.csv") %>% clean_names()

While converting a points data frame into a vector file is as easy as using the st_as_sf function (from
sf), we need to pay attention to the data quality of the geographic coordinates. In real-world data, the
location of every event or incident is not likely to be known, sometimes limiting a data scientist’s ability
to see the whole picture. Furthermore, missing coordinates can prevent R from processing data frames into

8To calculate the distance between degrees longitude: cosine (π × latitude/180) km.
9For the Chicago PD data, visit: https://data.cityofchicago.org/Public-Safety/Crimes-2018/3i3m-jwuy/data.

https://github.com/DataScienceForPublicPolicy/diys
https://data.cityofchicago.org/Public-Safety/Crimes-2018/3i3m-jwuy/data

12.4. VECTORS 249

vectors. Before converting into spatial data, be sure to remove records that are missing coordinates. While
station_df has complete information, crime_df is missing n = 4254 or 1.5% of reported crime incidents. In
the code snippet below, we directly convert station_df into a spatial file and add a missing values filtering
step before converting crime_df.
Convert into station_df to sf
station_sf <- station_df %>%

st_as_sf(coords = c("longitude", "latitude"))

Remove NAs from crime_df and convert to sf
crime_sf <- crime_df %>%

filter(!is.na(longitude) & !is.na(latitude)) %>%
st_as_sf(coords = c("longitude", "latitude"))

With the data in spatial form, we need to set the CRS, then transform it into a useful form. First, we set
the standard EPSG 4326 (WGS84) as the CRS, then re-project the files into a computationally useful CRS.
In this case, we choose UTM zone 16N, which is EPSG 32616. This CRS flattens the Earth’s surface and
reports coordinates in meters, making it possible to calculate accurate distance between locations as long as
data are confined to the Zone 16N. We will revisit these more advanced processing steps later in this chapter.
Set CRS
station_sf <- st_set_crs(x = station_sf, value = 4326)
crime_sf <- st_set_crs(x = crime_sf, value = 4326)

Transform
station_sf <- st_transform(station_sf, 32616)
crime_sf <- st_transform(crime_sf, 32616)

12.4.5 Reading shapefiles
When working with vector data containing lines and polygons, we will need a shapefile. The boundary of
geopolitical units (e.g., counties, countries, cities) are often maintained in spatial files. In addition, public
resources such as the location of police stations and parks are often stored in spatial information. Data
input/output is often the largest barrier to starting a project—shapefiles are no exception. In this section,
we build on the previously imported pair of Chicago datasets by loading a polygon shapefile of police districts
in Chicago.

To get started, let’s load a polygon shapefile for police districts in Chicago using the st_read function.10
The only argument st_read needs to load the police district shapefile (chicago-police-districts.shp)
is the file’s location.
Load the police district shapefile
district_sf <- st_read("data/chicago-police-districts")

Set to same CRS
district_sf <- st_transform(district_sf, st_crs(crime_sf))

Inspect the shapefile
district_sf

Extracting a single variable. Upon loading the shapefile, we find that it contains a collection of n = 25
polygons—each row represents a single police district containing its label and number along with its polygon
(geometry). If we would like only one variable, then apply select (dplyr package) to extract the variable
of interest. Alternatively, transmute can be used to select and transform the variable. However, if we are
only interested in the geometry, then we can extract the geometry column using st_geometry.

10The function is also called read_sf.

250 CHAPTER 12. SPATIAL DATA

Extract police district, which can be plotted if passed to ‘plot‘
district_sf %>% transmute(dist_num %>% as.numeric())

Extract the geometry
district_sf %>% st_geometry()

12.4.6 Spatial joins
One of the most common spatial analysis tasks is to aggregate the number of points in a polygon. For example,
in our crime data, we could be interested in counting the number of incidents that occur in each police district.
These point-in-polygon summaries require a spatial join. A cousin of the tabular joins introduced in Chapter
5, a spatial join looks for spatial intersections between a point vector and a polygon vector. Some spatial
joins are analogous to inner joins (intersects) while others are like full joins (unions). Spatial joins can be
computationally intensive as each point needs to be compared with all other polygons to find a match.
Fortunately there are simple, easy-to-use geo-processing functions such as st_join to facilitate joins and
st_interects to identify overlapping vector objects (sf package). In this section, we describe the process
of finding a spatial intersection, then use the resulting joins to summarize and visualize crime patterns by
Chicago police district.

Point-in-Polygon Join. In the code snippet below, we conduct a spatial join to determine to which police
district (district_sf) does each incident belong (crime_sf). The goal is to construct a data frame of points
with new attributes (variables) added from overlapping police districts. Before starting, it is a good idea to
check if both layers have the same CRS. If not, we would need to re-project one vector based on the CRS
of the other using st_transform. In this case, we apply the CRS from the incidents data to the district
file. With the data ready, we apply st_join to the point data (x) and polygons (y) specifying that we are
interested in overlaps (join = st_intersects).

The resulting file has the same number of points as the original crime file with two additional columns
containing information from the overlapping police district polygon: dist_label and dist_num (the label
and number of the matched police district).
Check if CRS match
st_crs(crime_sf) == st_crs(district_sf)

Conform CRS
district_sf <- st_transform(district_sf, st_crs(crime_sf))

Join district to crime data
crime_sf <- st_join(x = crime_sf,

y = district_sf,
join = st_intersects)

Aggregating points from shapefiles. To aggregate the data, we can treat the spatial join results as
data frames. One reasonably efficient approach involves applying table to the district column of crime_sf,
returning the total number of incidents per district. Alternatively, dplyr’s group_by and summarize can
facilitate more complex summaries.11

Count incidents by district (using ’dist_num’), rename table
crime_count <- crime_sf$dist_num %>% table() %>%

as.data.frame()
names(crime_count) <- c("dist_num", "n_incidents")

Choropleth map. A thematic map with shading or patterns proportional to some metric is known as
a choropleth map. In the case of crime, the number of incidents can be used to shade police districts in

11Because our spatial join was not able to assign a district to some incidents, we may need to remove the non-joined
observations with NA for dist_num as well as remove the geometry column from the output.

12.4. VECTORS 251

order to find crime hot spots. However, in the example above, the counts are captured in a separate table
crime_count. When calculating any aggregates in R, the results will first need to be joined to a shapefile in
order to be visualized. Fortunately, sf files can be joined to data frames using the left_join function as
long as there is a common identifying column. In the example below, the common column is dist_num.
Join crime counts to district
district_sf <- left_join(x = district_sf,

y = crime_count,
by = "dist_num")

With the data ready to go, a choropleth map can be rendered from the augmented shapefile. Incidents appear
to be clustered in certain areas, indicating that there are hot spots.
Plot
ggplot(data = district_sf, aes(fill = n_incidents / 1000)) +

geom_sf(color = "black", size = 0.05) +
scale_fill_viridis_c("Number of Incidents (’000)", option = "magma") +
guides(fill = guide_colourbar(barwidth = 15, barheight = 1)) +
theme_void() + theme(legend.position = "bottom")

5 10 15
Number of Incidents ('000)

Figure 12.11: Number of incidents by Chicago police district.

More complex summaries. The crimes are quite widespread, but what proportion of crimes resulted in an
arrest? Once again, we follow the same paradigm: compute the summary statistic, then join to the shapefile.
In this case, we compute the arrest percentage using dplyr functions, then join to the district_sf shapefile
(Figure 12.11).
Calculate arrest status and district number for each crime
district_arrests <- crime_sf[, c("dist_num", "arrest")] %>%

as.data.frame() %>%
group_by(dist_num) %>%
summarise(share_arrests = 100 * mean(arrest, na.rm = T))

Join to district data
district_sf <- left_join(x = district_sf,

y = district_arrests,
by = "dist_num")

In Figure 12.12, the share of incidents that result in an arrest is once again plotted using ggplot. What do we
see? The share of police-involving incidents that result in arrest varies from district to district. The contrast
is even more striking when comparing the pair of choropleths—arrest rates are more concentrated in some
neighborhoods than others. There are many potential explanations for this difference, but this simple map

252 CHAPTER 12. SPATIAL DATA

raises some interesting and important questions about policing, crime, equity, and policy.
ggplot(data = district_sf, aes(fill = share_arrests)) +

geom_sf(color = "black", size = 0.05) +
scale_fill_viridis_c("Percent with Arrest", option = "magma") +
guides(fill = guide_colourbar(barwidth = 15, barheight = 1)) +
theme_void() + theme(legend.position = "bottom")

10 20 30
Percent with Arrest

Figure 12.12: Percent of incidents that resulted in an arrest.

12.4.7 DIY: Analyzing spatial relationships
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example
is labeled diy-ch12-spatial-analysis.Rmd.

One of the most useful features of spatial data is proximity. The distance between two locations might
hold a clue about a spatial concept. In our housing examples from earlier chapters, proximity to sources of
pollution and central business districts might be contributors to or detractors from the sales price. Likewise,
the distance to police stations might hold some clue about crime patterns—perhaps crimes tend to occur
farther away from stations? Furthermore, two locations that are closer together might be more related and
distance is the medium that can help quantify these relationships. To answer any questions concerning
distance between locations, we need to compute a distance matrix.

Similar to the matrices used for Hierarchical Agglomerative Clustering in Chapter 11, a distance matrix
quantifies the relationship between all points in a dataset. Suppose we would like to compute the distance
between three Chicago police stations: 1, 2, 3. The first 3 × 3 matrix below shows all of the combinations
between the three stations and the second matrix fills in some distances in meters.

Distance matrix =

⎡
⎣

D1,1 D1,2 D1,3
D2,1 D2,2 D2,3
D3,1 D3,2 D3,3

⎤
⎦ =

⎡
⎣

0 3090 8896
3090 0 11882
8896 11882 0

⎤
⎦

where Di,j gives the distance between station i and station j.

The top-left entry (entry D1,1 above or entry [1,1] in matrix notation) is the distance between the first
station and itself. Of course, the distance between an object and itself is zero. Therefore, the diagonal of the
matrix is all zeros. The second entry in the first row (entry D1,2 above or entry [1,2] in matrix notation)
tells us the distance between the first station and the second station. This number is the same as the first

https://github.com/DataScienceForPublicPolicy/diys

12.4. VECTORS 253

entry in the second row (D2,1), because they both give the distance between the first and second police
station. In other words, the matrix is symmetric: Di,j = Dj,i.

Computing a distance matrix between all objects in a shapefile requires only one function: st_distance()
(sf package). The function calculates the distance in the units of the specified CRS (meters in this case).
Because there are 25 police districts in the district_sf vector layer, the distance array will have 25 rows
and 25 columns, representing the distance (in meters) between each of the 25 districts.

district_dist <- st_distance(district_sf)

This distance matrix can help answer challenging questions that would otherwise be overlooked. In this
section, we lay out steps to computing distances and use them to analyze complex spatial problems in the
criminal justice system.

Distance between objects in different sets of data. Another way to pose distance-related questions is
in terms of distances between objects in two distinct sets of vectors. For example, we may be interested to
know how far each crime in crime_sf is from the nearest station in station_sf.

The function st_distance can help with this application as well, requiring two arguments (x and y). The
output is a distance matrix where the objects in x are the rows and the objects in y are the columns, i.e.,

Distance matrix =

⎡
⎢⎢⎢⎣

Dx1,y1 Dx1,y2 · · · Dx1,yn

Dx2,y1 Dx2,y2 · · · Dx2,yn

...
...

. . .
...

Dxn,y1 Dxn,y2 · · · Dxn,yn

⎤
⎥⎥⎥⎦

where Dxi,yj
gives the distance between the ith element of x (e.g., the ith crime) and the jth element of

y (e.g., the jth police station). The matrix dimensions match our understanding of the function: we have
263,423 crimes (as rows) and 23 police stations (as columns).
Distances between crimes and police stations
dist_mat <- st_distance(x = crime_sf,

y = station_sf)

If we want to know the distance to the nearest police station for each crime, then we can employ the same
strategy as before—using apply to find the minimum distance along the rows of dist_mat. We do not need
to worry about 0 distances now, because we calculated distances between two different sets of objects. Let’s
find the distance to the nearest police station for each crime and then add it to the crime_sf dataset as a
new variable.
Minimum distance to station for each crime
crime_min_dist <- apply(X = dist_mat,

MARGIN = 1,
FUN = min)

Add distance as variable in crime_sf
crime_sf <- crime_sf %>% mutate(dist_station = crime_min_dist)

Let’s plot the kernel density of these distances.12 Based upon these data, 17.7% of crimes in Chicago happen
within 1 kilometer of a police station.

One might wonder how this distribution of crimes’ distances to the nearest station compares to the overall
distribution of distances to the nearest station for all of Chicago. If police station locations are chosen to
be in high-crime areas (or if they attract crime), then we would expect the distances between crimes and
stations to be concentrated on smaller distances relative to the distances to stations for all of Chicago. If
crimes avoid police stations, then we would expect their distribution to be pushed farther out relative to
greater Chicago (Figure 12.13).

12Given the size of the code snippets, this section’s geo-processing and visualization code is made available at the Github

254 CHAPTER 12. SPATIAL DATA

0%

0.01%

0.02%

0.03%

0.04%

0 5 10 15
Distance to nearest station (kilometers)

D
en

si
ty

Figure 12.13: Kernel density plot of distance between crime incidents and nearest police station (meters).

Constructing a benchmark. If we believe police station location has some relationship with location of
crime, we need to construct a benchmark—some comparison group that gives context. One strategy involves
constructing a point vector containing a random or regular set of points placed throughout Chicago. This
benchmark makes the assumption that if distance did not matter, then there is an equal chance of crime
at every location in Chicago. When we compare the equal chance distribution to the actual crime-distance
distribution, we can infer if distance to police station has any relationship with crime.

To construct this equal chance distribution, we first create a single polygon for Chicago by merging the police
district polygons (district_sf) through the st_union function. In effect, the borders between all polygons
are removed and merged into a single large city limits boundary. From this new city polygon, we draw a
hexagonal grid of points (n = 10000 to be exact) using st_sample. Then, the same distance calculations are
applied to find the minimum distance between each of the n = 10000 points to police stations.
Re-project district shapefile to UTM 16N
district_sf <- st_transform(district_sf, crs = 32616)

Take union
outline_chicago <- district_sf %>% st_geometry() %>% st_union()

Draw sample of ’hexagonal’ points from Chicago
points_chicago <- st_sample(x = outline_chicago, size = 10000, type = "hexagonal")

Distances between points and police stations
dist_points_station <- st_distance(x = points_chicago, y = station_sf)

Find distance to nearest station for each point
points_min_dist <- apply(X = dist_points_station, MARGIN = 1, FUN = min)

Convert points_chicago to sf data frame
points_chicago <- points_chicago %>%

st_coordinates() %>% as.data.frame() %>%
mutate(dist_station = points_min_dist) %>%
st_as_sf(coords = 1:2) %>%
st_set_crs(32616)

In Figure 12.14, we compare the police districts, the grid points, and the minimum distance to police station.

project under spatial-visualizations.

12.4. VECTORS 255

To an extent, the minimum distance to police station loosely follows the boundaries of the police districts—
there are both areas that are well-covered and others that are far less so. We can see that most of Chicago
is within 5 km of a police station—with the exception of the airport in the northwestern corner.

(A) Police districts (B) Grid of points (C) Distance to nearest station

2.5

5

7.5+

Dist. (km)

Figure 12.14: An assortment of views of Chicago police stations: (A) Outline of Chicago police districts, (B)
Hexagonal grid of equally spaced records, (C) Raster plot of distance to nearest station.

Comparing distance distributions. To answer the original question, we plot kernel densities of the
distance distributions as seen in Figure 12.15. The vast majority of crimes (red line) in this dataset occur
within 2.5km of a police station, while our sampling of points from all of Chicago has a lower density in this
distance range. This means that crimes tend to occur closer to police stations. Is this causal? It is hard to
draw a firm conclusion.

0e+00

1e−04

2e−04

3e−04

4e−04

0 2,000 4,000 6,000 8,000

Distance to nearest station (meters)

D
en

si
ty

Equal chance

Crimes

Figure 12.15: Comparison of distance distributions between equal chance and crime incidents.

There are many factors that could contribute to this trend. Perhaps police stations are placed in high-crime
neighborhoods or perhaps police place more effort on areas near the station, etc. Drawing a causal inference
is quite challenging without an experimental design.

Nonetheless, it may be informative to focus on a few crime types and other attributes of the data. Perhaps
the likelihood of generating an arrest differs based on distance from a police station offers a clue. In Figure
12.16, we compare the distance distribution between narcotics incidents that led to an arrest versus those
that do not. Interestingly, we see some evidence that the chance of an arrest could depend upon the distance
between the incident and the police station. That said, there are many other relationships which we would
want to explore more deeply before making any decisions.

256 CHAPTER 12. SPATIAL DATA

0e+00

1e−04

2e−04

3e−04

4e−04

5e−04

0 2,000 4,000 6,000

Distance to station (meters)

D
en

si
ty

Arrest made? False True

Figure 12.16: Distance distributions of narcotics incidents by whether an arrest was made.

12.5 Beyond this chapter
In this chapter, we presented approaches to process data for spatial analysis and create simple visualizations
of spatial data. Indeed, being able to work with shapefiles and rasters opens a world of possibilities, extending
data science beyond ordinary tabular data to the complexities of geography.

GIS Tools. While R provides many powerful tools for analyzing spatial data—especially the sf and raster
packages—there are other standard GIS tools on which many geospatial analysts rely, such as Quantum GIS
(open source) and ArcGIS (proprietary). Where these tools excel is their ease of use: analysts do not need
to know how to program to manipulate vector and raster files. Both tools are designed with a graphical
user interface, yet have the flexibility to be programmed to do more complex tasks.13 For this reason, public
agencies, especially in environmental and emergency management agencies, heavily rely on these tools to
manage their GIS data on infrastructure assets and risks, but also to communicate emerging trends and
operations plans.

For organizations that publish internet connected applications, JavaScript libraries such as leaflet are
standard. Libraries like leaflet lower the bar for software developers to design, stylize, and render maps
built on vector and raster data but also base map layers from providers like Mapbox, OpenStreetMap, and
ESRI.

Spatial Models. The analysis of spatial data, however, is quite challenging as relationships can vary over
time and space. For example, the effect that a new bar has on local drunk driving likely extends past the
block on which the bar is located. But how far? Does the distance depend upon population density? What
about proximity to other bars? Further, failing to account for the spatial structure of your setting can bias
regression-based estimates for the effect of policies—essentially generating a spatial data form of omitted-
variable bias. Much like autocorrelation over time, some questions require data scientists to consider spatial
autocorrelation. This type of autocorrelation draws on nearby observations to help describe spatial variation.
A crime hotspot would indicate some sort of spatial autocorrelation. Spillover effects from election wins,
disease outbreaks among other phenomena are prime cases for analyzing spatial autocorrelation. However,
spatial autocorrelation and other more advanced topics are beyond the scope of this text but are nonetheless
important for advancing analytical goals in spatial data science and public policy.

These are important concepts that can vastly expand one’s ability to deliver pragmatic insights and high
quality research. For further reading on the topic, consider:

13To take advantage of the programming capabilities, one needs to have skill in programming in Python.

12.5. BEYOND THIS CHAPTER 257

• Applied Spatial Data Analysis with R by Roger Bivand, Edzer Pebesma, and Virgilio Gómez-Rubio.
• Spatial Data Science by Edzer Pebesma and Roger Bivand.
• Introduction to Spatial Econometrics by James LeSage and R. Kelley Pace.

For a quick and gentle introduction to spatial statistical analysis, consider the open-source tool GeoDa.
Designed for ease of use, the software analyzes spatial patterns (e.g., clustering, spatial autocorrelation,
etc.) through an graphical user interface.14 R, however, can accomplish most of the functionality of the
software listed above, doing so scalability, flexibility, and reproducibility. Furthermore, its extensibility and
integrations with interactive software (e.g., HTMLWidgets) makes R an appropriate general purpose spatial
analysis tool. Nonetheless, applying effort to learn any of these tools will prove to be invaluable, especially
as spatial data will become an integral part of public policy in the coming years.

14To download the GeoDa tool, visit https://geodacenter.github.io/.

https://geodacenter.github.io/

Chapter 13

Natural Language

Although we are constantly exposed to written text and human speech, most of the data we encounter in
policy settings is available in neat, tabular formats. In the public sector, both surveys and administrative
data tend to rely on closed-form questions to quality control responses to a finite set of responses, such as
yes/no and agree/neutral/disagree. Forcing respondents to a well-defined response makes for neat datasets,
but ignores the richness of natural language that could be harvested from open-ended questions. Language
carries a tremendous amount of information, encoded in nouns, verbs, adjectives, and other parts of speech.
Combinations of these words allow language to carry multi-layered information, conveying sentiments, ideas,
facts, etc.

Part of the reason for focusing on closed-form questions is the cost of interpreting and analyzing a large open-
ended dataset. Historically, open-ended responses required an army of survey editors to quality control the
responses, then another army of analysts to read, analyze, and annotate the responses so that structured data
could be derived for quantitative analysis. As you can imagine, this can be a costly process and sustaining
a consistent level of quality is challenging. It is relatively easy for one person to read and summarize every
document—the encodings she applies are consistent with her interpretations and personal biases. But if the
task is distributed to an analyst army, we quickly find challenges with intercoder reliability in which two or
more reviewers can review the same document and reach the same conclusion. Language is complex, and
when authors use different literary devices, vocabularies and nuances, two analysts may easily be led on
divergent paths. In addition, if a certain quality of the data was not captured during the first pass, then the
entire analyst army would need to backtrack and revisit past documents to reflect the updated thinking.

Despite these challenges with using text as data, let’s be clear that there is no better substitute to analyzing
a corpus of text than human eyes. The analysis of massive amounts of text, however, can benefit from
advances in machine and statistical learning in the area of Natural Language Processing (NLP)—a discipline
focused on automating the manipulation and analysis of speech and text. Recent advances have demonstrated
possibilities that were previously believed to be science fiction. NLP has become so commonplace in modern
web technologies that stories about their use are appearing in mainstream media.

Let’s take a peculiar example from Facebook. Given growing challenges with privacy and security on social
media platforms, Facebook built a chat bot called “Liam Bot” to help employees navigate challenging con-
versations about the company with family during the holidays (Frenkel and Isaac 2018). Chat bots are an
NLP application that takes human-written text, parses it, then applies a trained prediction model to retrieve
the best pre-written response. The input data does not need significant manual attention other than a set of
answers and a number of different formulations of the associated questions. In the context of the holidays,
a Facebook employee could send a question to Liam Bot when faced with a difficult conversation with a
privacy-obsessed uncle—a far more economical option than offering a hotline.

While chat bots are not yet common in public sector, a working knowledge of NLP concepts can greatly
expand one’s range of motion. In this section, we introduce basic concepts for using natural language for

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_13

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_13

260 CHAPTER 13. NATURAL LANGUAGE

data science pursuits. Building upon data processing approaches used in Chapter 4 (Data Manipulation), we
review how to process text into analysis-ready form. These basic data processing procedures are the gateway
to a world of possibilities ranging from topic modeling to document search to sentiment analysis (Figure
13.1). We then explore two techniques that can easily be deployed for public sector applications: sentiment
analysis and topic modeling. Sentiment analysis converts text into metrics of positive, negative, and other
sentiment to provide deeper meaning, whereas topic modeling is an application of unsupervised learning
to find mixtures of topics in documents. We close the chapter by contextualizing the application of these
methods in the public realm and highlight notable developments that hold game-changing possibilities.

Figure 13.1: Basic text processing is the gateway to more advanced text analysis, such as document search,
topic modeling, sentiment analysis to name a few.

13.1 Transforming text into data
13.1.1 Processing textual data
Speeches contain a wealth of information. As humans, we are taught to understand verbal and written
communication—pick out the nouns, verbs, and adjectives, then combine the information to decipher mean-
ing. Take the following excerpt from the 2010 State of the Union:

Now, one place to start is serious financial reform. Look, I am not interested in punishing banks.
I’m interested in protecting our economy. A strong, healthy financial market makes it possible for
businesses to access credit and create new jobs. It channels the savings of families into investments
that raise incomes. But that can only happen if we guard against the same recklessness that nearly
brought down our entire economy. We need to make sure consumers and middle-class families
have the information they need to make financial decisions. We can’t allow financial institutions,
including those that take your deposits, to take risks that threaten the whole economy.

We can infer that the excerpt was written in a time of economic hardship and the author recognizes that
consumers and middle class need better information about the financial markets. Despite how clear this
message may be humans, many analysts might not consider text to be data. Our minds analyze the text and
infer what the author is signaling, sifting for key terms and phrases. The majority of words convey little to
no meaning—they help make language more fluid. We can cut to the core meaning by dropping the “filler”

Now, one place to start is serious financial reform. Look, I am not interested in punishing banks.
I’m interested in protecting our economy. A strong, healthy financial market makes it possible for
businesses to access credit and create new jobs. It channels the savings of families into investments
that raise incomes. But that can only happen if we guard against the same recklessness that nearly
brought down our entire economy. We need to make sure consumers and middle-class families

13.1. TRANSFORMING TEXT INTO DATA 261

have the information they need to make financial decisions. We can’t allow financial institutions,
including those that take your deposits, to take risks that threaten the whole economy.

The frequency of each unique word in each document can be tabulated, then structured into a matrix where
each row represents a document and each column contains the frequency of each word. Of course, this process
could be done manually, but imagine sorting through all 7,304 words in the 2010 address and scaling the
process to the roughly 1.9 million words in State of the Union addresses between 1790 and 2016. Every little
detail about the data needs to be meticulously converted into a usable format. Let’s take one line from above
and dissect the processing from natural language into tabular data:

“We need to make sure consumers and middle-class families have the information they need to
make financial decisions. We can’t allow financial institutions, including those that take your
deposits, to take risks that threaten the whole economy.”

Many NLP use cases are built on the assumption that the insights locked in the text can be learned from
a bag of words—the frequency of words matter but their order might not. Thus, removing punctuation and
numbers will reduce the size of the textual data. In addition, text can be further standardized by converting
values to lower case—a computer may otherwise interpret “economy” and “Economy” as different strings.
These basic transformations are applied to the text:

“we need to make sure consumers and middleclass families have the information they need to make
financial decisions we cant allow financial institutions including those that take your deposits to
take risks that threaten the whole economy”

But perhaps most importantly is the necessity to break text into more manageable pieces known as tokens,
or individual words or groups of words. It is only once words are tokenized that we can unleash the power
of NLP techniques. Each space between each word can be used as a delimiter that can be used to parse a
string of words (Table 13.1).

Table 13.1: Tokens from example sentence.

we families financial those that
need have decisions that threaten
to the we take the
make information cant your whole
sure they allow deposits economy
consumers need financial to
and to institutions take
middleclass make including risks

Some tokens carry little meaning, such as “the”, “in” among others. These stop words are linguistic padding
that makes language more easily spoken or communicated and can be removed without significant impact
on the meaning of the text. By removing these words, we can also reduce the size of the data, computational
burden and eliminate potential sources of noise. While there is a standard stop word list available in most
data science software, some domains require custom stop word lists.

To maximize the signal from individual words, many tokens need to be standardized as they are variations of
a root word. For example, the words “argues”, “argued”, and “arguing” are variations on the word “argue”.
If these variations are not distilled to their root, the value of a word may be understated. To address this
problem, each word can be stemmed in order to expose common roots (Table 13.2).

Lastly, the importance of words can, in part, be summarized in terms of word frequencies. Not only can word
counts reduce the size of the data, but they convert tokens into quantitative variables that enable analysis.
When all these stops come together, how text is processed will directly influence the success of an analysis.
If stop words are adequately removed and word stemming is accurate, then the word counts will be quite

http://www.presidency.ucsb.edu/sou_words.php

262 CHAPTER 13. NATURAL LANGUAGE

Table 13.2: Terms after removing stop words and stemming.

need middleclass make allow
make famili financi financi
sure inform decis institut
consum need cant includ

useful. In this case, each “financial” and “make” appear twice in the text, perhaps indicating that there is
an orientation toward action (make) for financial considerations (Table 13.3).

Table 13.3: Term Frequencies after removal of stop words and application of stemming.

Term Freq Term Freq

financi 2 decis 1
make 2 deposit 1
need 2 economi 1
take 2 famili 1
allow 1 includ 1
cant 1 inform 1
consum 1 institut 1

Term frequencies will often be further transformed into a Document-Term Matrix (DTM), which lays out
each document as a row and each token as a column with frequencies occupying the intersections. This
format allows NLP models to treat each token as a variable and make comparisons between rows and
between columns.

13.1.2 TF-IDF
Term frequencies from one document are not likely to carry profound insights; however, when term frequencies
are compared across multiple documents, we can find identify which terms distinguish one document from all
others. Conversely, we can also identify which words are likely stop words. Term Frequency-Inverse Document
Frequency (TF-IDF) is one measure that can help in document comparison. TF-IDF is comprised of two
measures. While we have already introduced term frequencies, Inverse Document Frequency is a measure of
how rare a term is relative to the entire corpus:

IDF = ln(N

nterm
)

where N is the number of documents and nterm is the number of documents that contain a given term. We
can also see that if the ratio N

nterm
is too large, the IDF value could overpower the term frequency, thus

taking the natural log ln keeps the influence of IDF in check. A term appears in all documents will result in
IDF = 0—indicating the term does not carry unique information.

The combination of TF and IDF allow their product—TF-IDF—to serve as one of the most commonly
applied word weighting metrics:

TF-IDF = TF × IDF

In practice, a value of TF-IDF = 0 can be treated like a stop word. When applied to document search,
TF-IDF allows search applications to focus on the terms that matter most and efficiently rank and retrieve
relevant files.

13.1. TRANSFORMING TEXT INTO DATA 263

13.1.3 Document similarities
NLP has allowed organizations to quickly review documents at scale. Organizations often need to quickly
find similar documents from a large catalog of documents. The process can at times be tedious and arduous,
requiring much manual work. Lawyers, for example, often search for pertinent legal records to make their
arguments more compelling. Meanwhile, academic researchers often conduct extensive literature reviews so
they can articulate how their work contributes to their field of study. In both cases, they start with a set of
documents and look for other documents that are also similar, often times using simplistic keyword searches
to sort documents.

Suppose a lawyer has found an important document X and would like to find all other documents in a
database that are related. A data scientist could conduct pairwise comparisons of term frequencies (X
and Y) from each document. A Pearson’s Correlation Coefficient is a logical first choice to facilitate the
comparison:

ρX,Y = cov(X, Y)
σXσY

=
∑n

i=1(Xi − μX)(Yi − μY)
∑n

i=1(Xi − μX)2
∑n

i=1(Yi − μY)2

Although a simple correlation is a convenient calculation, there are shortcomings. How similar a pair of
documents depends on how many words overlap. In general, the vocabularies of two documents will rarely
overlap, yet a simple correlation treats non-matching values as information. Notice that the vector of each X
and Y ae each mean-centered (μ), which retains zero match values in the correlation calculation. In practice,
Pearson’s correlation may artificially inflate the relationship between two vectors by treating zero values as
relevant information.

To hone-in on the relevant overlapping terms, we can instead rely on cosine similarity, which associates two
vectors without mean-centering its values:

cos(θ) = X · Y
‖X‖‖Y‖ =

∑n
i=1 XiYi

√∑n
i=1 X2

i

√∑n
i=1 Y 2

i

Cosine similarity originates from vector calculus, calculating the angle between two vectors to measure their
similarity. If vector X is parallel to vector Y , then they are similar. Otherwise, if X is orthogonal to Y , then
they are dissimilar. Values of cosine range between 0 (not similar) and 1 (perfectly similar). Note that the
measure is the cosine of the angle between two vectors, but not the strength of the relationship.

DTMs and any m × n matrix can be transformed into a matrix of cosine similarities that can map document
similarities. From streaming services to document search, cosine similarity is a transformative measure that
enjoys widespread use.

13.1.4 DIY: Basic text processing
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example is
labeled diy-ch13-text.Rmd.

Textual processing, TF-IDF and document similarities are foundational for natural language applications.
In this DIY, we illustrate how to put these concepts to use. Using a set of news articles, we illustrate the
process of constructing a DTM, then use TF-IDF to find potential stop words. Lastly, we relate two or more
documents to one another using cosine similarity. For a large scale database, these steps can help identify
relationships between documents and easily facilitate qualitative analyses.

The news articles used for this DIY focus on the US’ federal budget deficit as reported on in October 2019
(Rappeport 2019, Crutsinger 2019, Schroeder 2019, Elis 2019, Franck 2019) and were scraped from various
news websites.1

1In the wild, these news articles would have been embedded in HTML files on websites, requiring some attention to the
structure of the page.

https://github.com/DataScienceForPublicPolicy/diys

264 CHAPTER 13. NATURAL LANGUAGE

To start, we load a combination of packages, namely the tidytext package to work with text, dplyr for
general data manipulation, and stringr for manipulating string values.

pacman::p_load(tidytext, dplyr, stringr)

Processing. The five articles are stored in a CSV named deficit-articles.csv and should be scrubbed
of all numeric values and punctuation using simple regex statements. While we recognize that numbers can
carry useful information, we are more concerned with standardizing words in order to approximate their
importance.
Load file
deficit <- read.csv("data/deficit-articles.csv",

stringsAsFactors = FALSE)

Remove punctuation and numeric values
deficit$text <- str_remove_all(deficit$text, "[[:digit:][:punct:]]")

In one neat block of code, we unravel the text into neat word counts for each article by piping multiple
commands together (%>%).

Tokenization. The code first tokenizes the text column into unigrams (single word tokens) using the
unnest_tokens function (tidytext). A new column word is added to the data frame, expanding the number
of rows from n = 5 to n = 2989. Note that each token is automatically converted to lower case.

Stop words. With the tokens exposed, stop words are removed. We retrieve a data frame of standard English
stop words using the get_stopwords, then apply an anti_join (dplyr package) that retains rows that did
not match terms in the stop word list. This step significantly reduces the size of the dataset to n = 1792.

Stemming. Using the wordStem function (SnowballC package), all words are screened and adjusted for
stemming if appropriate. The result is assigned to a new variable word.stem using the mutate function
(dplyr). As a sanity check, only stemmed tokens with more than one character are retained.

Tabulation. Lastly, the remaining unigrams are summarized as term frequencies (TF)— a count of how often
each word.stem token appears in each article. The resulting dataset contains n = 1005 records, meaning that
some terms appear more than once and contain relatively more of an article’s meaning than other terms.
Unigram in one go
unigram <- deficit %>%

unnest_tokens(word, text) %>%
anti_join(get_stopwords(language = "en")) %>%
mutate(word.stem = SnowballC::wordStem(word)) %>%
filter(nchar(word.stem) > 1) %>%
count(outlet, word.stem, sort = TRUE)

Document-Term Matrix. The tabulations can be further processed into a DTM using the cast_dtm function
(tidytext)—useful for applications like topic modeling. We should also highlight that some NLP use cases
call for a Document-Feature Matrix (DFM), which allows metadata about each document among other
variables to be included in the matrix. DFMs are quite similar to DTM in structure, but are stored as
separate object classes to facilitate other applications.
Cast into DTM - requires tm package
pacman::p_load(tm)
deficit_dtm <- unigram %>%

cast_dtm(document = outlet,
term = word.stem,
value = n)

Cast into DFM -- requires quanteda package

13.1. TRANSFORMING TEXT INTO DATA 265

pacman::p_load(quanteda)
deficit_dfm <- unigram %>%

cast_dfm(document = outlet,
term = word.stem,
value = n)

Distinguishing between documents. Term frequencies imply that higher frequency terms carry more
importance. In our example, all five articles focus on the 2019 federal budget deficit and the words “trillion”,
“dollar”, “budget”, and “deficit” all have high TF values. These high-frequency terms prove particularly
useful to distinguish between articles about deficits and any other non-deficit topic such as education and
defense. In the case of a narrowly defined corpus exclusively focused on deficits, these terms can be viewed
as stop words. TF-IDF can be applied to identify overly common words.

To use TF-IDF in R, we apply the bind_tf_idf function to our word counts, which calculates and joins the
TF, IDF, and combined TF-IDF metrics for each token.

unigram <- unigram %>%
bind_tf_idf(term = word.stem,

document = outlet,
n = n)

The effect of TF-IDF on word importance can be quite dramatic and visualized in a parallel coordinate plot
as seen in Figure 13.2. The plot illustrates how a single token’s relative value changes between simple term
frequencies and TF-IDF. About three-quarters of unigrams increase in their importance once controlling for
how common terms are across the corpus of articles (see blue coordinate pairs). In contrast, one-quarter of
the terms reduced in rank, indicating that they hold less distinguishing information. These terms include
obvious deficit-related terms such as deficit, spend, year, trump, budget, tax, among others.

TF-IDF can also be used to remove hard-to-identify keywords. In the deficit articles, approximately 10%
of terms (n = 100) have TF-IDF values equal to zero. It is not to say these terms are unimportant, but
removing these terms in this context could be beneficial.

0.00

0.25

0.50

0.75

1.00

n tf_idf
variable

Sc
al

ed
 v

al
ue

Direction
down

same

up

Figure 13.2: Comparison of word frequency and TF-IDF distributions.

Finding similar documents. In order to associate the articles with one another, we construct cosine
similarities from the DTM. There is, however, an outstanding issue should the similarities be based on term
frequencies or TF-IDF. Using the cosine function (coop package), we calculate the cosine similarities for
each case.

266 CHAPTER 13. NATURAL LANGUAGE

Load COOP
pacman::p_load(coop)

Similarity based on termfrequencies
grams_n <- unigram %>%

cast_dtm(word.stem, outlet, n)
cosine(grams_n)

Similarity based on TF-IDF
grams_tfidf <- unigram %>%

cast_dtm(word.stem, outlet, tf_idf)
cosine(grams_tfidf)

As is apparent in Figure 13.4, our choice of input metric emphasizes different qualities of the articles. The raw
term frequencies help identify articles that are related in overarching topics, fixating on common words that
describe the federal deficit. However, TF-IDF treats these common words as stop words, leaving only terms
that are reflective of the author’s style and attitudes rather than the big picture. Both are valid approaches.
The most appropriate metric, however, is dependent on your analytical objective.

Cosine similarity is simply a relational metric that helps rank documents with respect to each document.
By calculating the cosine similarity between all documents in a corpus, one can recommend other articles
with similar content. For example, the scores in Figure 13.4 can be interpreted as a list of similar articles
conditional on the MarketWatch article.

Table 13.4: Comparison of cosine similarity using TF-IDF and
Term Frequencies. All values are compared against the deficit arti-
cle written by MarketWatch.

Outlet n TF-IDF
NYTimes 0.5693 0.08263
The Hill 0.4759 0.03794
AP 0.6289 0.06353
CNBC 0.6377 0.1015

13.2 Sentiment Analysis
Although its roots can be traced to public opinion analysis in the early 20th century and computational
linguistics research of the 1990s (Mantyla, Graziotin, and Kuutila 2018), sentiment analysis has only seen
significant adoption in the 2000s with the advent of micro-blogging platforms and interest in quantifying
sentiment at a societal level. Sentiment analysis extracts subjective signals from text, such as moods, feelings,
and attitudes. When applied to Twitter data, for example, sentiment analysis can help track trends in public
opinion (Pak and Paroubek 2010) and predict stock market movement (Bollen, Mao, and Zeng 2011). In the
investment space, companies are keenly aware of the value of sentiment analysis in extracting information
about company performance and trajectory. This new reality has led companies to be far more careful and
place positive or less negative spin on their reporting (Trentmann 2019). In this section, we examine the basics
of sentiment analysis, starting with sentiment lexicons that convert words into sentiments, then illustrate
how to construct a sentiment score.

Flavors of sentiment analysis. Sentiment analysis can either be built on statistical models or human-
made rules. In the case of supervised learning, the objective is to predict the sentiment label for each
document. The sentiment label is determined by human reviewers in advance by reading a document and
the input variables are a bag-of-words. Rules-based approaches, in contrast, rely on sentiment lexicons—or a
reference table that connects keywords to sentiments—to annotate the sentiment for specific keywords. The

13.2. SENTIMENT ANALYSIS 267

former approach places sentiment prediction in a formal machine learning framework (often times a neural
network), using a loss function to measure how a model can replicate the label. Its success, however, depends
on the quality of the label—is it generalizable and reliably labeled by the human reviewer? In contrast, the
rules-based approach is more convenient and economical, making it a reasonable starting point. For this
reason, we dedicate the remainder of this section to rules-based approaches.

13.2.1 Sentiment lexicons
A sentiment lexicon is the bridge between keywords and sentiments, such as positive and negative, happiness,
anger, etc. When joined with a tokenized document, each matching word is converted into a sentiment that
then can be more easily analyzed on equal footing. For example, words like “abandoned”, “attack”, and
“adverse” can indicate anger. A sentence with all three words can indicate more intense anger.

While time-consuming to construct, it is well-worth the effort to create your own lexicon for domain-specific
use cases. There are, however, general purpose English language lexicons in extensive use in the field. We
discuss three of which below

• The Bing Lexicon provides a rudimentary binary classification, by assigning words as negative and
positive (Liu, Hu, and Cheng 2005).

• The National Research Council (NRC) Emotion Lexicon associates words with eight emotions (antici-
pation, trust, surprise, anger, fear, sadness, joy, and disgust) as well as two sentiments (negative and
positive). The NRC lexicon was crowd-sourced using Amazon’s Mechanical Turk (Mech Turk) platform
(Mohammad and Turney 2013).2

• The AFINN dictionary assigns a score to words, ranging between -5 and 5, where negative scores are
represented by negative values. Unlike NRC, AFINN was constructed by researcher Finn Arup Nielsen
(Nielsen 2011).

As each dictionary is differently motivated, we would also expect their outputs to behave differently. Word
choice, in particular, only minimally overlaps between dictionaries. The NRC lexicon has broad coverage
of sentiments for n = 6468 words and the Bing lexicon covers n = 6786, but only n = 2484 words overlap
between the two lexicons. One might assume that two lexicons can be combined to increase the word coverage,
but each lexicon approaches sentiment encoding differently. The NRC lexicon covers a range of emotions and
sentiments while the AFINN lexicon encodes the intensity of a sentiment on a numeric scale.

We illustrate the differences in focus between these three lexicons by scoring two exemplar sentences in
Figure 13.3. The first sentence is clearly one that reflects a positive mood— all three dictionaries agree, but
annotate different words with the exception of the word “delighted”. Whereas NRC only flags one word as
positive, Bing flags three and AFINN has a total of +4.

The second sentence taken from a Forbes magazine article about the life of the late Fed Chairman Paul
Volcker (Carlson 2019) is more complicated. The sentence is positive as Volcker is credited for “killing”
an era of heightened inflation in the economy yet all dictionaries score keywords as negative. This result
illustrates that rules-based approaches will struggle with the innate complexities of natural language such
as nuance and negation. Computer scientists have developed strategies for negation handling in which an
algorithm checks for negation keywords (e.g., not, non-, no) in the proximity of a term. However, more layered
language such as sarcasm is harder to detect (Gonzalez-Ibanez, Muresan, and Wacholder 2011). Nonetheless,
lexicons extract meaning that would otherwise be locked in text.

13.2.2 Calculating sentiment scores
Sentiments can be summarized as a set of scores. In many ways, developing scores is a feature engineering
exercise that captures sentiment from different perspective. We start with basic notation to distinguish
between different types of tokens:

Nd = n+
d − n−

d + n0
d

2Amazon’s Mech Turk asks internet participants to conduct many simple tasks for small payments. It is a favorite of social
scientist experimentalists to create training samples (Samuel 2018).

268 CHAPTER 13. NATURAL LANGUAGE

Figure 13.3: Two sentences and sentiment tags. The first sentence (top) is would yield a net positive score,
although each lexicon fixates on different words. The second sentence (bottom) illustrates the challenges
with rules-based sentiment analysis.

where Nd is the total number of tokens in document d, n+
d are positive tokens, n−

d are negative tokens, and
n0
d are neutral. In addition, each positive and negative token is assigned a sentiment value xd. While AFINN

dictionary directly assigns these values (between −5 and 5), NRC and Bing sentiments should be converted:

xd =
{

−1, if negative
1, if positive

These are the basic building blocks that can be used to quantify the qualities of the text.

A document’s positivity and negativity is expressed as the proportion of tokens that are tagged for each
sentiment:

Positivityd =
n+
d

Nd
, Negativity =

n−
d

Nd

The net sentiment is expressed as the normalized difference between positive and negative tokens, bounding
the values between −1 and 1. However, if the number of sentiment tokens is small relative to the total number
of tokens, the net metric can be small and hard to interpret.

Netd =
n+
d − n−

d

Nd

Alternatively, the mood of a document can be estimated from the sentiment tokens, yielding estimates of
polarity. The polarity can be computed from both frequency counts n and the sentiment values x—capturing
word-level intensity. In practice, polarity and net sentiment are highly correlated

Polarityd =
n+
d − n−

d

n+
d + n−

d

13.2. SENTIMENT ANALYSIS 269

Polarityd =
|x+

d | − |x−
d |

|x+
d | + |x−

d |

The amount of sentiment in the text can be informative but should also consider if many or only a few words
drive the insights that we gleen. The expressiveness of a document is a useful metric that is estimated as
the proportion of tokens that carry sentiment. For some political communication strategies, the goal is to
deliver information devoid of any sentiment. The expressiveness metric is a useful way to keep track of how
successful is one in keeping to an emotionless information campaign.

Expressivenessd =
n+
d + n−

d

Nd

A deep understanding of the sentiment of text should be informed by all metrics. Focusing on the net or
polarity alone endows only a narrow understanding of the text. Incorporating expressiveness to understand
how much signal is present informs whether the sentiment is more than random noise. Decomposing the
scores into positivity and negativity can give a clue about different arguments that exist within the same
text. Language is indeed complex. When conducting a sentiment analysis, one should be cognizant of those
complexities.

13.2.3 DIY: Scoring text for sentiment
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example is
labeled diy-ch13-sentiment.Rmd.

In this DIY, we turn to a Wikipedia entry about the 1979 Oil Crisis that had a substantial effect on the
Western World’s economy.3 The article on the Oil Crisis presents both positive and negative effects—a
perfect example of how sentiment analysis can summarize a body of text. The first paragraph describes the
magnitude of the crisis:

The 1970s energy crisis occurred when the Western world, particularly the United States, Canada,
Western Europe, Australia, and New Zealand, faced substantial petroleum shortages, real and
perceived, as well as elevated prices. The two worst crises of this period were the 1973 oil crisis
and the 1979 energy crisis, when the Yom Kippur War and the Iranian Revolution triggered
interruptions in Middle Eastern oil exports.

Whereas the sixth paragraph softens the implications, turning to instances where the crisis had a far less
adverse impact:

The period was not uniformly negative for all economies. Petroleum-rich countries in the Middle
East benefited from increased prices and the slowing production in other areas of the world.
Some other countries, such as Norway, Mexico, and Venezuela, benefited as well. In the United
States, Texas and Alaska, as well as some other oil-producing areas, experienced major economic
booms due to soaring oil prices even as most of the rest of the nation struggled with the stagnant
economy. Many of these economic gains, however, came to a halt as prices stabilized and dropped
in the 1980s.

Our objective with this DIY is to show how sentiment evolves over the first six paragraphs as scored
by the Bing Lexicon implemented in the tidytext package. To start, we read the raw text from the
wiki-article.txt file.

3The Wikipedia article on the Oil Crisis can be found at https://en.wikipedia.org/wiki/1979_oil_crisis.

https://github.com/DataScienceForPublicPolicy/diys
https://en.wikipedia.org/wiki/1979_oil_crisis

270 CHAPTER 13. NATURAL LANGUAGE

Load package
pacman::p_load(tidytext, dplyr)

Read text article
wiki_article <- readLines("data/wiki-article.txt")

To make use of the text, we tokenize the six paragraphs of text, remove stop words, then apply a left join
with the Bing lexicon. The resulting table contains both matching and non-matching terms and aggregates
term frequencies by paragraph para, word, and sentiment. In total, n = 18 words are labeled negative and
n = 11 words are positive.
Set up in data frame wiki_df <-data.frame(para =
1:length(wiki_article),

text = wiki_article,
stringsAsFactors = FALSE)

Join tokens to lexicon
sent_df <- wiki_df %>%

unnest_tokens(word, text) %>%
anti_join(get_stopwords(language = "en")) %>%
left_join(get_sentiments("bing")) %>%
count(para, word, sentiment, sort = TRUE)

Label terms without sentiment
sent_df$sentiment[is.na(sent_df$sentiment)] <- "none"

Next, we write a basic function to calculate various sentiment metrics such as polarity and expressiveness.
Packages such as sentimentr implement scoring, but as rules-based sentiment analysis is fairly simple, we
directly implement metrics in the formula to illustrate their accessibility.

sentMetrics <- function(n, s){

Set input metrics
N <- sum(n, na.rm = T)
x_p <- sum(n[s =="positive"], na.rm = T)
x_n <- sum(n[s =="negative"], na.rm = T)

Calculate scores
return(data.frame(count.positive = x_p,

count.negative = x_n,
net.sentiment = (x_p - x_n) / N,
expressiveness = (x_p + x_n) / N,
positivity = x_p / N,
negativity = x_n / N,
polarity = (x_p - x_n) / (x_p + x_n))

)

}

The function is designed to work on one document at a time, requiring a loop to score each paragraph in
the article. We iterate over each paragraph using lapply, returning the results in a data frame rated.
Apply sentiment scores to each paragraph
rated <-lapply(sort(unique(sent_df$para)),function(p){

para_df <- sent_df %>% filter(para == p)
output <- sentMetrics(n = para_df$n,

13.3. TOPIC MODELING 271

s = para_df$sentiment)
return(data.frame(para = p,

output))
})

Bind into a data frame rated <-do.call(rbind, rated)

Let’s examine the results by plotting sentiment by paragraph in Figure 13.4. In the first line graph (Graph
(A)), we see that the first four paragraphs are net negative, then turn net positive in the last two paragraphs.
Notice that both polarity and net sentiment tell the same story, but the magnitudes of their values are quite
different. In fact, the Pearson’s correlation is ρ = 0.964. When we dive deeper into the positivity and
negativity, we see that the switch in tone is widespread—earlier paragraphs have mostly negative terms
while the tone softens in later paragraphs that describe less dire conditions in the world economy.

−1.0

−0.5

0.0

0.5

1.0

2 4 6
Paragraph Number

Po
la

rit
y

(b
lu

e)
, N

et
 S

en
tim

en
t (

or
an

ge
)

(A) Polarity and Net Sentiment by Paragraph

0.00

0.05

0.10

0.15

2 4 6
Paragraph Number

N
eg

at
iv

ity
 (r

ed
),

Po
si

tiv
ity

 (b
lu

e)

(B) Negativity and Positivity by Paragraph

Figure 13.4: Sentiment scores for the first six paragraphs of the Wikipedia article on 1979 Oil Crisis. Graph
(A) illustrates net sentiment and polarity. Graph (B) plots positivity and negativity.

13.3 Topic modeling
13.3.1 A conceptual base
Topics bring focus and cohesion to natural language, yet they are not explicitly defined or labeled. A State of
the Union address, for example, is amalgam of many topics. But the precise number of topics is debatable—
two or more experts might not agree on the precise number. To extract this information, topic models
examine the co-occurrence of words and sometimes metadata about the text to identify likely topics. If were
to use common unsupervised learning techniques (e.g., k-means, HAC), we would over-simplify the topic
distribution as an entire document would be assigned to a single topic despite the likely presence of two or
more topics.4 To overcome this hurdle, topic models approach the problem from the lens of a mixture model
in which one or more topics could be simultaneously present—the chance they are present is represented as
a probability.

Mixture models are quite different from other techniques covered in this textbook. For the most part, we have
4Other clustering techniques can accommodate mixtures of non-exclusive clusters; however, these are beyond the scope of

this text.

272 CHAPTER 13. NATURAL LANGUAGE

focused on discriminative models—techniques that find boundaries that separate classes or clusters from one
another conditioned on a set of input variables X. For example, we could predict the labels associated with
each document of a corpus by estimating their conditional probabilities— Pr(label = 1|tokens). While the
conditional model simplifies the world into a convenient finite set of discrete classes, it also tends to overlook
the richness of the data’s empirical distributions.

Topic models, in contrast, are generative models that are motivated by an interest in distributions. A doc-
ument can be viewed as distributions of words and distributions of topics. A generative model learns by
attempting to reconstruct the distributions from which the observed data was drawn—in a sense, it is
forensic scientist piecing together the story from which a piece of evidence originated. By replicating the
data-generating process, these models learn the interactions and nuances in text that are otherwise ignored
in discriminative models. Interestingly, these models can also generate data. More formally:

Topic models assume that each topic is defined as a probabilistic mixture over words.
Each document contains a distribution of topics, represented as a topic proportion (θ).
Each word (w) has a probability (βwk) of belonging to topic k.

In policy contexts, θ and β are the minimum that is required to tell a compelling NLP story or enable a
precision use case. The former (θ) serves as an indicator of how much of a topic is present in a document,
while the latter (β) allows analysts to articulate a topic based on the words that most likely define it.

There is not just one topic modeling technique in use. In fact, there are a variety that have emerged since
the early 2000s, the best known of which is Latent Dirichlet Allocation (LDA) as developed in Blei, Ng, and
Jordan (2003). However, more recent developments such as Structural Topic Models (STM), as developed
in Roberts, Stewart, and Airoldi (2016), extend the sophistication of topic models to capture nuances in
text. Both techniques make use of common strategies that relate words, topics, and documents. Rather than
covering its inner workings in extensive detail, we provide a cursory overview of common elements across
topic models.

13.3.2 How do topics models work?
Topics models are computationally expensive and require patience to execute, especially when the number of
tokens in a corpus can be insurmountably large (thousands if not hundreds of thousands). As illustrated in
Figure 13.5, topic models iteratively search for K user-defined topics. Below, we walk through the common
elements of a topic model as laid out in terms of inputs, initialization, and estimation. Note that most of the
computational action occurs at the document level.

Inputs (Top of diagram). The empirical journey of a topic model starts with the data. Each document d
contains Nd number of tokens that are used as the input data to determine which topics are present. This
information is stored in a vector Wd—each document d has its own of a varying length Nd. Next, we define
the number of topics K. When we refer to an individual topic k, we assume it is indexed between 1 and
K (k ∈ {1, ..., K}). At this point, we do not know what is contained in each topic—only that we believe
there to be K topics, which we may have prior ideas from reviewing the text. K is also a hyperparameter
that can be tuned by minimizing statistical metrics (see Arun et al. (2010) and Cao et al. (2009)) although,
once again, there is no better substitute than visual inspection of each topic’s words. The choice of K will
determine the success of the topic model and guides all steps that follow.

As we will see below, topic models learn by iteratively updating θ and β. Some topic models require a
maximum number of iterations I. More iterations equate to more time spent waiting for results, but more
stable and better quality results.

Initialization (Middle of diagram). To kick-start estimation, the topic model is seeded with some initial
data that will be updated as we iterate. We start by creating a vector Zd that indicates the topic assignment
k for each word n in document d. This means that every token in vector Wd has a topic assignment reflected
in Zd. Since we do not know the true topic for each word, we randomly assign topics k ∈ {1, ..., K}—this is
known as random initialization.5

5Other initialization methods can also be employed with prior knowledge.

13.3. TOPIC MODELING 273

Next, we populate the β and θ matrices with initial values. The β matrix is a V × K matrix of word
probabilities. Each row v is a token (or word) from the corpus’ vocabulary (all words) and each column is a
topic k. The intersections are filled with a count of how often a token has been assigned to a specific topic.
The counts for each value of βvk can be calculated from the each document’s topic assignment vector Zd.

The second matrix is the topic proportions θ of dimensions D × K. Each row d is a document, whereas each
column is a topic k. Each cell θdk is the count that a topic k exists in document d, which can be estimated
using Zd. During estimation, θ is maintained as a matrix of token counts.

Estimation (Bottom of diagram). With the basic data in place, estimation proceeds through a series of
loops, centering on each word wdn and its topic assignment zdn. For each word and topic assignment, we
estimate the probability that the selected word belongs to topic k (pr(wn|zn = k)), which yields a vector
of probabilities of length K. This vector of probabilities dictates how much of each topic is present in a
multinomial topic distribution from which we draw one topic at random.6

For example, if topic k = 3 is estimated to be pr(wn|zn = 1) = 0.75, then there is a 75% chance that the
topic that is drawn is topic k = 3. The new topic that is drawn z∗ replaces zdn, then in turn updates β
and θ. Each iteration of the nested loop updates the multinomial topic distribution, which in turn forces the
parameters to evolve.

Analysis . Once estimation is completed, β and θ are row standardized (each row sums to one), which yields
two sets of probability distributions that can facilitate interpretation. A topic k can be interpreted based
on the tokens in β with the highest probability of belonging to that topic. These keywords can be reasoned
through to produce a topic label, though it depends on analyst interpretation. How often a topic appears
can be inferred from θk, allowing one to sort a corpus based on the highest chance that a topic appears.

Indeed, topic models involve a fair amount of statistical machinery, but when applied to textual data, the
results unlock deep and scalable insights.

13.3.3 DIY: Finding topics in presidential speeches
DIYs are designed to be hands-on. To follow along, download the DIYs repository from Github
(https://github.com/DataScienceForPublicPolicy/diys). The R Markdown file for this example is
labeled diy-ch13-topics.Rmd.

Sorting through tens of thousands of paragraphs of text for the right nugget of information is time-consuming
and expensive. Placing attention in the wrong part of a corpus can mean the difference between finding useful
information and lost time. Topic modeling can summarize the gist of documents and facilitate more effective
search, doing so on large corpuses of information. In this DIY, we illustrate how topic modeling can bring
structure to an expansive set of text using the STM method using the stm package.7 Our objective is to train
a topic model, identify topics, surface quotes that provide a flavor for the topic, then recommend similar
paragraphs for review.

Load. Our corpus is a collection of State of the Union (SOTU) speeches and letters delivered by 42 presi-
dents.8 The text was scraped from WikiSource.org and has been structured to include

• Basic identifiers such as an id for each SOTU, the title of the SOTU (e.g., Sixth State of the Union
Address), the year of the address, a paragraph number, the president, and link to the source;

• The text storing each paragraph as a separate line;9

• An average sentiment score for each paragraph calculated using the Bing Lexicon

Topics and word choice have evolved over the last two centuries. The problems faced by the Founding Fathers
of the US are different than contemporary presidents. We limit our analysis to speeches delivered between

6There are other inputs into the sampling procedure such hyperparameters that change the shape of the underlying distri-
butions; however, these parameters vary from one technique to another, thus we have chosen to omit these in this overview.

7While LDA is the most common topic modeling in use, STM is arguably flexible, intuitive, and more extensible.
8As of 2019, the only presidents who did not deliver SOTU addresses or letters were James A. Garfield and William Henry

Harrison.
9Minor adjustments were made to minimize errors. These adjustments can be seen in the data processing scripts on Github.

https://github.com/DataScienceForPublicPolicy/diys

274 CHAPTER 13. NATURAL LANGUAGE

Figure 13.5: A simplified illustration of common elements of topic models.

13.3. TOPIC MODELING 275

1960 and 2019, or n = 6219 paragraphs.
Load
pacman::p_load(stm, dplyr)

Read 1960 to 2019
sotu_text <- read.csv("data/sotu.csv", stringsAsFactors = FALSE)
sotu_text <- filter(sotu_text, year >= 1960)

Process data. The stm package simplifies the process with a pre-built processing function.10 The only user
inputs required for processing are custom stop words and metadata. While a TF-IDF calculation can expose
common stop words, a pure statistical calculation may be too aggressive. We instead choose to define a set
that are known favorites of US presidents, defined in the stop_custom vector.

stop_custom <- c("applause", "thank", "you", "goodnight",
"youre", "im", "weve", "ive", "us", "that",
"know", "back", "one", "much", "can", "shall",
"fellow", "people", "government", "get", "make", "agency", "department",
"america", "united", "states", "american", "americans",
"tonight", "ago", "now", "year", "years", "just", "new",
"must", "without", "said", "will")

The textProcessor function in stm constructs a DFM from a vector of documents (text field in sotu_text).
We make use of a STM’s special ability to allow word choice to evolve within a topic depending on contextual
factors as encoded in metadata about the document. We provide the function with a data frame of metadata
on sentiment and the year. With the inputs provided to the function, stm removes common stop words,
numbers, and punctuation; stems words; and converts text to lower case (lowercase). In addition, custom
stop words are provided (customstopwords = stop_custom) and non-alphanumeric characters that can
cause unnecessary complications in the modeling process are also removed (onlycharacter = TRUE).

ingest <- textProcessor(documents = sotu_text$text,
metadata = sotu_text[, c("year","sentiment")],
onlycharacter = TRUE,
customstopwords = stop_custom)

The SOTU corpus is further processed by sweeping rarely occurring words. By reducing the unnecessary
sparsity of a DFM, we not only can cut the time required for the topic model to converge but also mitigate
noise that would otherwise be introduced into the results.

sotu_prep <- prepDocuments(documents = ingest$documents,
vocab = ingest$vocab,
meta = ingest$meta,
lower.thresh = 2)

Model. With the data ready, we apply an stm model to the processed documents, vocabulary, and metadata
as stored in the sotu_prep object. With n = 6219 paragraphs, there are likely a large number of topics. We
arbitrarily choose K = 25 as a starting point and a maximum of I = 100 iterations. Furthermore, an initial
seed is set so the analysis can be replicated.

sotu_stm <- stm(documents = sotu_prep$documents,
vocab = sotu_prep$vocab,
data = sotu_prep$meta,
K = 25, seed = 314,
max.em.its = 100)

Analyze. The resulting stm object stores the learned topics and their associated words. To examine the
10For more advanced DFM processing, consider using the processes illustrated in this chapter using tidytext package or the

quanteda package.

276 CHAPTER 13. NATURAL LANGUAGE

expected topic proportions, simply plot the stm object. The most common topic (#16), for example, appears
to contain global security issues as characterized by “world”, “peace”, and “war”. The second most common
topic (#22) is budget and spending focused. Granted, the word combinations are only approximations of the
underlying topic. If the analysis were re-run with a different seed number, we would likely obtain similar but
not precisely identical topics—this is one of the challenges with unsupervised learning applied to a subjective
area of study (Figure 13.6).

plot(sotu_stm, font = 1, text.cex = 0.8, main = NA)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Expected Topic Proportions

Topic 25: mani, meet, first
Topic 2: task, ahead, concern

Topic 11: secur, life, social
Topic 1: system, reform, welfar
Topic 8: nuclear, weapon, prevent
Topic 12: hope, past, progress
Topic 9: presid, congress, honor
Topic 5: health, right, care
Topic 15: well, thing, say
Topic 18: forc, defens, militari
Topic 24: crime, citi, clean
Topic 21: good, women, men
Topic 23: great, chang, histori
Topic 13: interest, nation, cooper
Topic 7: congress, hous, ask
Topic 17: state, union, never

Topic 3: school, educ, children
Topic 19: program, propos, budget
Topic 10: energi, administr, polici
Topic 20: nation, communiti, help
Topic 6: tax, famili, busi
Topic 14: econom, economi, world

Topic 4: work, let, togeth
Topic 22: spend, million, percent
Topic 16: world, peac, war

Figure 13.6: Preview of topics sorted by expected topic proportions in SOTU corpus.

Nonetheless, we can improve our interpretation of each topic by identifying paragraphs that have the highest
probability of containing the topic of interest. This requires sorting the θ vector the topic k of interest in
descending order, then retrieving the corresponding raw text for the highest probability. The findThoughts
function simplifies the retrieval of example text that illustrates the concepts captured in a topic. When we
focus on education (Topic #3), the clearest arguments come from George W. Bush and Barack Obama.
When we turn our attention to military (Topic #18), we find details on military plans presented by John F.
Kennedy and Jimmy Carter (Table 13.5).

thoughts <- findThoughts(model = sotu_stm,
texts = sotu_text$text,
n = 2,
topics = c(3,18))

Table 13.5: First 150 characters of representative thoughts.

Topic President Text
3 George W. Bush Third: We need to encourage children to take more math and science, and

make sure those courses are rigorous enough to compete with other
nations. We. . .

3 Barack Obama Let’s also make sure that a high school diploma puts our kids on a path
to a good job. Right now, countries like Germany focus on graduating
their hig. . .

13.3. TOPIC MODELING 277

Topic President Text
18 Jimmy Carter the development of a new fleet of large cargo aircraft with

intercontinental range; the design and procurement of a force of Maritime
Prepositioning S. . .

18 John F. Kennedy Thus we have doubled the number of ready combat divisions in the
Army’s strategic reserve–increased our troops in Europe–built up the
Marines–added. . .

The probabilistic nature of a topic model means that topics will overlap with one another—some are more
distinguishable than others. Using the topic probabilities Θ, it is a fairly straight forward procedure to
calculate a topic correlation matrix using a Pearson’s correlation cor. Visualizing these relationships can
prove challenging, however.

One visualization that embraces complexity is the network graph, which uses space and negative space to
show the interconnectedness and closeness between entities (referred to as nodes) based on linkages (edges).
Whereas each topic can be treated as a node, the cells of a correlation matrix can indicate the strength of
relationship between two topics. All topics are likely connected to one another, but even a weak linkage can
introduce unwanted noise. Thus, the topic correlation matrix can be simplified by treating correlations below
a threshold as if no relationship exists. Below, we rely on the topicCorr function (stm package) to processes
the topic correlations, simplify the matrix by setting a correlation cutoff = 0.02, then format the data to
be rendered as a network graph using plot.

In Figure 13.7, we find that one of the 25 topics is disconnected from all other topics. Meanwhile, the
remaining 23 topics are correlated to varying degrees—this is the magic of a mixture model that allows
topics to be related but with different foci. To illustrate nuances between topics, we render five topics (#3,
#6, #11, #16, and #18) using the word cloud function. Topics 3 and 6 are network neighbors that have
a common focus on families and children; However, the former focuses more on education issues, whereas
the latter on finances. Topics 16 and 18 both relate to national security, but the former stresses peace and
liberties while the latter focuses on military and defense.
Topic correlations
sotu_cor <-topicCorr(sotu_stm,

cutoff = 0.02)

Set a 2 x 3 grid
par(mfrow = c(2,3), mar = rep(2,4))

Plot network diagram of topics
plot(sotu_cor, vlabels = 1:25,

vertex.color = "lightblue", vertex.size = 25)
text(0.5, 1.5, "Topic Correlation", cex = 1.2)

Plot word clouds for five topics (requires wordcloud package)
pacman::p_load(wordcloud)

for(i in c(3, 6, 11, 16, 18)){
cloud(sotu_stm, topic = i, max.words = 15, col = "slategrey")
text(0.5, 1, paste0("Topic ", i), cex = 1.2)

}

Searching for text. With topic proportions θ, we can more accurately correlate documents with one
another. A document’s topic proportions are a set of coordinates that summarize its complexities and allow
for it to be related to any other document. Suppose a specific paragraph from President Bill Clinton’s 1997
speech captures a concept that you would like to further explore in presidential speeches:

278 CHAPTER 13. NATURAL LANGUAGE

1

2

3

4 56
7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

2223

24

25

Topic Correlation

colleg
school

educyo
un

g parent

teacher

high
job child

everi

ne
ed help

give

student
Topic 3

creditpay
small
tax

million

jo
b

busi

work

famili
compani

incom

cut

worker

help
rais

Topic 6

he
lp

better

social
improvlife

retir
live

qu
al

itieveri

secur

veteranperson
benefit

save

age

Topic 11

fight
terrorist

continu
secur

end

war

support

terror
free

nation

iraqalli

freedompe
ac

world
Topic 16

troop
soviet

alli
strateg

ca
pa

bl

missil
afghanistan

increas

maintain

threat

un
io

n

defens

se
cu

r militari

forc

Topic 18

Figure 13.7: Network graphs show how two or more topics are correlated. When plot a few topics as word
clouds, it becomes clear that some topics are more similar than others and these similarities are clearly
represented by the proximity of topic nodes.

13.3. TOPIC MODELING 279

We must continue, step by step, to give more families access to affordable, quality
health care. Forty million Americans still lack health insurance. Ten million children
still lack health insurance; 80 percent of them have working parents who pay taxes. That
is wrong. My balanced budget will extend health coverage to up to 5 million of those
children. Since nearly half of all children who lose their insurance do so because their
parents lose or change a job, my budget will also ensure that people who temporarily
lose their jobs can still afford to keep their health insurance. No child should be without
a doctor just because a parent is without a job.

This is paragraph #4121 of n = 6219 paragraphs in the corpus, focusing on affordable health care and the
risk of losing coverage. Using the topic probabilities (sotu_stm$theta), we calculate the cosine similarity
(coop package) to estimate how every paragraph is related to all other paragraphs. This similarity matrix can
feed a function to recommend relevant paragraphs conditional on a specific document (sim(θ|d)), requiring
a vector of text, a cosine similarity matrix (sim), the paragraph number (item_index), and the number of
records to be returned (n).
Calculate Cosine Similarity
pacman::p_load(coop)
sim_mat <- cosine(t(sotu_stm$theta))

Function to return top N most similar records
simRecs <- function(text, sim, item_index, n){

Retrieve similar text, removing the target document from consideration
top_rec_index <- which(rank(-sim[,item_index]) <= n + 1)
top_rec_index <- top_rec_index[top_rec_index != item_index]
top_recs <- text[top_rec_index]

Retrieve top scores
top_scores <- sim[top_rec_index, item_index]

Return results
results <- data.frame(top_scores, top_recs)
return(results)

}

Return similar documents conditional on paragraph 4121
simRecs(text = sotu_text$text,

sim = sim_mat,
item_index = 4121,
n = 5)

Table 13.6 presents the three most related paragraphs to #4121. The results are striking: they capture a
broader topic than just health care— financial well-being and stability. The topic also seems to be one that
is always a priority from one president to the next. In fact, the example text surfaces quotes from Presidents
Lyndon Johnson and John F. Kennedy, helping to draw links over time. This approach does not always
return perfect results, but it is far more efficient than manual annotation and expands one’s reach to beyond
what is possible by analyst.

280 CHAPTER 13. NATURAL LANGUAGE

Table 13.6: Top 3 most similar paragraphs relative to Paragraph 5024.

Score Year President Text

0.9696 1998 Bill Clinton We have to make it possible for all hard-working families to meet
their most important responsibilities. Two years ago, we helped
guarantee that Americans can keep their health insurance when
they change jobs. Last year, we extended health care to up to
five million children.

0.9573 1964 Lyndon Baines Johnson We must extend the coverage of our minimum wage laws to
more than 2 million workers now lacking this basic protection of
purchasing power.

0.9522 1962 John F. Kennedy For our older citizens have longer and more frequent illnesses,
higher hospital and medical bills and too little income to pay
them. Private health insurance helps very few—for its cost is
high and its coverage limited. Public welfare cannot help those
too proud to seek relief but hard-pressed to pay their own bills.
Nor can their children or grandchildren always sacrifice their own
health budgets to meet this constant drain.

13.4 Beyond this chapter
13.4.1 Best practices
The NLP techniques presented in this chapter are a zero-to-one improvement—a first step towards using text
as data. Rules-based sentiment analysis is a brute force approach that is only as good as how clearly humans
can articulate the relationship between words and sentiments. Topic modeling incorporates sophisticated
statistical techniques to find structure and latent concepts in text, but their outputs are too abstract for
direct consumption by policy teams.

As these techniques are newer and more complex than tried and true methods like regression, data scientists
need to demystify NLP and articulate their value to policy audiences. Below, we have outlined a few example
uses of NLP:

• Feature engineering. Open-ended responses are often left untouched. Sentiment analysis and topic
analysis can transform open-ended responses and augment a dataset with new variables that capture
signal that would be overlooked.

• Sentiment tracking for elections. Sentiment analysis can be applied to news and social media feeds to
develop sentiment indexes. These indexes can in turn be used as inputs into a nowcasting model that
correlates contemporaneous polling results with the sentiments online. If the relationships are stable,
the nowcasting model could provide an approximation of candidate favorability in near real time.

• Summarizing public comment. Governments often request for public feedback on proposed plans and
legislation. While policy teams will opt for slow, expensive manual review of thousands of open
responses, topic modeling can be an economical alternative to find topical structure among the responses
and relate documents to one another.

• Indexing documents. Imagine a policy analyst finds an important document during the course of her
research and needs to find all other related documents. It would be infeasible to read tens of thousands
of documents. Instead, topic modeling can index and organize a large corpus of documents for review.
By applying cosine similarity to the topic probabilities, the analyst could rank documents by relevance,
then more effectively prioritize her document search.

In each of the examples, notice how NLP serves as a middle layer that processes text into a more useful
form. The outputs do not speak for themselves. Thus, the success of a NLP project is very much dependent
on how one plans the use case.

13.4. BEYOND THIS CHAPTER 281

13.4.2 Further study
While language is so commonplace in society, humans often underestimate its complexity. For a computer
to achieve the same understanding has yet to be seen, but there have been remarkable advancements that
are made possible through deep learning. We end this section by introducing a game-changing advancement
known as language embeddings.

In 2013, a group of researchers at Google developed Word2vec—a framework that constructs word embeddings
by training a two-layer neural network on a corpus of text (Mikolov et al. 2013). Some words carry a meaning
that is more like some than others—there is a spatial relationship between each discrete word. Language
embeddings make this spatial relationship possible. Each word is encoded as a k dimensional vector. For
example, words defense and pizza can be encoded as five-dimensional embeddings:

defense =

⎡

⎢
⎢
⎢
⎢
⎣

1.3
−0.2
4.2
2.3

−3.8

⎤

⎥
⎥
⎥
⎥
⎦

pizza =

⎡

⎢
⎢
⎢
⎢
⎣

0.1
2

−1.2
0.2
5.4

⎤

⎥
⎥
⎥
⎥
⎦

Unlike topic probabilities, embeddings are not interpretable like topic probabilities produced by topic models.
However, embeddings can be treated as a spatial coordinate that allows comparison between a pair of
words. When used in conjunction with a language model, word embeddings enable use cases such as auto-
completion used in smartphones and word processing applications. In 2014, Google researchers extended the
framework to allow documents to be mapped into a k dimensional embedding (Le and Mikolov 2014). The
Doc2vec algorithm allows any text document to be concisely summarized and compared using a few numeric
values rather than relying on a large document-term matrix. Indeed, these advancements have improved tech
company data products, such as recommendation engines and search.

The ecosystem of NLP algorithms has rapidly expanded and software capabilities are regularly open sourced
for public use, such as Stanford University’s Global Vectors (GloVe), Google’s Bidirectional Encoder Rep-
resentations from Transformers (BERT), and Facebook’s fastText. While the technology has evolved and is
more accessible, these advancements are not yet widely used in public sector due to the lack of natural use
cases and clear paths to adoption. Nonetheless, knowledge of these developments can be useful for when the
right opportunity presents itself to innovate through NLP.

To build a base in NLP techniques, Machine Learning for Text (Aggarwal 2018a) provides a survey of most
of the key developments and their inner workings. We also recommend reading the following seminal articles
for commonly used NLP methods:

• Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. “Efficient Estimation of Word
Representations in Vector Space”. arXiv. https://arxiv.org/abs/1301.3781.

• Devlin, Jacob, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. 2018. “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”. arXiv. https://arxiv.org/abs/1810.04805.

To stay up to date on the latest developments, visit the Computation and Language section of arXiv.

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1810.04805

Chapter 14

The Ethics of Data Science

14.1 An emerging debate
In 2017, Ali Rahimi and Benjamin Recht received the “Test of Time Award” at the Neural Information
Processing Systems (NIPS) conference—one of the top research conferences for machine learning and artificial
intelligence. The award recognized their paper entitled “Random Features for Large-Scale Kernel Machines”,
which found a way to speed up the process of training a non-linear model by projecting the problem into
a lower dimensional space that could be solved with linear methods. Since the time of the original paper
the machine learning field had dramatically evolved. Rahimi reflected upon the current state of the field in
acceptance speech, taking aim at an issue that polarizes the field:

We’ve made incredible progress. We are now reproducible. We shared code freely and used common
tasks benchmarks. We’ve also made incredible technological progress – self-driving cars seem to be
around the corner, artificial intelligence tags photos, transcribes voicemails, translates documents,
serves us ads. Billion-dollar companies are built on machine learning. In many ways we’re way
better off than we were 10 years ago. And in some ways we’re worse off.
There’s a self-congratulatory feeling in the air. We say things like “machine learning is the new
electricity”. I’d like to offer another analogy. Machine learning has become alchemy. (Rahimi
2017)

Rahimi’s statement was indeed provocative. It likened modern day magic (machine learning) with an ancient
pseudoscience, but his argument is not without merit. Alchemists believed it was possible to turn base
metals into gold, attempting to do so without the tools of the scientific method. In short, their approach was
arbitrary. Rahimi argued that modern day black box algorithms are being developed in a similar tradition—
we see inputs and outputs but have little understanding of the magic in between. Rahimi’s criticism was
aimed at some practitioners’ disconcerting lack of interest in why certain phenomena happened in algorithms.
Instead, the tuning of neural network architectures has a tendency to be iterative trial and error until some
optimal hyperparameter set is identified. Thus, the intuition behind what makes one deep learning algorithm
better than another is often lacking.

Without clear intuition and interpretability, we place faith on a black box’s outputs alone, which in turn
means we forego careful review and understanding of the many equations, assumptions, and the data. It
could be the case that the training data have biases that impose adverse policy positions on individuals.
The underlying model could unfairly favor one group over another without even including variables that
describe protected groups. Or perhaps the mathematics of the algorithm itself are not proven or understood,
giving way to unpredictable errors in the system. Rather than being the drivers of our scientific destinies,
we become passengers of happenstance when adopting the use of black boxes in public policy. Rahimi
argued for understanding the behavior of algorithms, which can be achieved through simple experiments and
formulating theories.

The following day, Yann LeCun—another top mind in ML—offered a different perspective in a public Face-
© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_14

283

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_14

284 CHAPTER 14. THE ETHICS OF DATA SCIENCE

book post:

Understanding (theoretical or otherwise) is a good thing. It’s the very purpose of many of us in
the NIPS community. But another important goal is inventing new methods, new techniques, and
yes, new tricks.

In the history of science and technology, the engineering artifacts have almost always preceded the
theoretical understanding: the lens and the telescope preceded optics theory, the steam engine pre-
ceded thermodynamics, the airplane preceded flight aerodynamics, radio and data communication
preceded information theory, the computer preceded computer science. Why? Because theorists
will spontaneously study “simple” phenomena, and will not be enticed to study a complex one
until there [is] a practical importance to it.1

The debate between Rahimi and LeCun resurfaced an uncomfortable tension between empiricism and
theory—should engineering new possibilities come first or should we instead focus on the theory that explains
its inner workings? The juxtaposed positions illustrate a clear divide in how much (or little) attention is
paid to transparency and interpretability. Much of the machine learning community follows the mantra, if
it does better than a benchmark, it is newsworthy. Indeed, the rapid pace of the peer-reviewed publication
cycle reflects the mantra exactly.2 But does this pose an obstacle for transparency? LeCun goes on to argue
that rigor and transparency may be required depending on the context:

Believe me, the vast majority of decisions made by ML systems do not require explanation. If
explanation were produced, no one would have the time or motivation to look at them. Explanation
are clearly required for decisions that affects people lives in major ways, and which they can
influence if given a reason. They are also required for judicial decisions and decisions that are
ultimately made by a person. But for most things, they are not useful.

How does this relate to public policy? While LeCun’s pragmatic position is well-taken, it overlooks the tense
interface between the Public’s perception of technology and the speed of innovation. The technology wielded
by governments should be for the public good and treat everyone equally. When the creator of the technology
is unable to offer an explanation of how or why it works, it is not possible for governments to ensure that
the black box is an equitable black box. This, in turn, creates risk for decision makers and ethical dilemmas.
As we will cover in this chapter, there are many situations in the utility of the black box suffers due to bias
and opaqueness.

The goal of data science is to better society by giving people access to better information. We can achieve
more rapid, precise decisions by placing data science products in as support tools to influence decisions, but
it leads us down a brave new path where technology and policy meld together. We need to ask hard questions
about how data science is applied. Does data science have the ability to serve all members of society rather
than a select few? How can data scientists ensure that they are producing fair and ethical products? In this
chapter, we review four topics that are shaping the ethics of data science, namely bias, fairness, transparency
and privacy. As the scope of the debate is evolving, we focus on foundational concepts and provide examples
where the state of practice is mature.

14.2 Bias
In 2014, Amazon started development on a supervised learning algorithm to rank resumes on a scale of
one to five stars based on previous candidate outcomes—in effect, a resume screening algorithm. While the
path forward seemed clear, there were lurking biases in the data. At the time, 77% of Amazon’s technical
workforce was male. And even though gender is not an explicit input into the algorithm, its outputs suggest

1See https://www.facebook.com/yann.lecun/posts/10154938130592143.
2At the time of writing this textbook, when using the term ML in the tech sector, practitioners usually refer to neural

networks and deep learning. The same term in less cutting edge sectors includes traditional ML (as covered in this book) and
new developments. However, the need for transparent models is an emerging necessity regardless of the form of ML.

https://www.facebook.com/yann.lecun/posts/10154938130592143

14.2. BIAS 285

that biases were implicitly learned. For example, the word “women’s” and names of some all-women’s colleges
were more heavily penalized. While some obvious biases could be mitigated, data scientists found that word
choice patterns were also indicative of gender. For example, some male candidates chose strong active verbs
such as “executed”, which would perpetuate the biases that Amazon sought to limit. Ultimately, the project
was unable to deliver reasonable results, erroneously recommending unqualified candidates. Amazon then
opted to close down this experimental initiative (Dastin 2018).

Bias is synonymous with a data science project that has gone off the rails. However, bias is a nuanced
concept. It can arise from many different sources, usually originating from within the data on which a model
or algorithm was developed. At the heart of it:

Bias is a condition in which a dataset does not reflect the target universe to which it will be
applied.

The broadness of this definition captures the essence of bias: it is complex. It could arise from a variety of
sources, and identifying and addressing bias requires practitioners to draw from a nuanced vocabulary. In
this section, we describe three types of bias, the tell-tale signs of their presence, and the effect they can have
on data projects.

14.2.1 Sampling bias
Current landscape. Sampling bias occurs when the data do not reflect the share of groups within a target
population. When a group is over- or under-represented, sampling bias can lead to misleading inferences
and erroneous predictions. While this might seem to be a mere statistical problem, it has had very real
consequences.

The 2016 U.S. presidential election is one such case in which sampling bias led to misleading inference. Prior
to Election Day, national polls indicated that the likelihood of Hillary Clinton winning the presidency was
between 71% and 99%. However, real estate mogul Donald Trump was the victor. What happened? A study
conducted by the American Association for Public Opinion Research (AAPOR) found that among the main
sources of inaccuracy was over-representation of college-educated voters.3 As college-educated voters tended
to favor Clinton, the estimates biased in her favor. Furthermore, the voter turnout patterns changed between
2012 and 2016 in a way that favored Trump, suggesting the sampling frame did not capture the behavior of
“likely voters” (Kennedy et al. 2018).

Sampling bias has been well-known since the advent of survey research and has been the focus of decades
of sampling design research. Nonetheless, biases will always appear when humans collect data. Detecting
sampling bias starts with defining and constructing a sampling frame—a list of all elements (e.g., people,
places, etc.) that comprise the population of interest. Well-designed samples are collected adhering to a
stratification scheme that subdivides the population into observable qualities (e.g., income bracket, gender,
race, education). This allows researchers to assess how closely the sample matches the known observable
characteristics of the target population and quality control the data collection process. Typically, hypothesis
tests (e.g., chi-square test, Kolmogorov-Smirnov test, etc.) are employed to assess the similarity between
sample and population. When proportions are not aligned, the data may have sampling bias that can lead
to inaccurate insights.

MIT Media Lab’s Gender Shades project offers a striking reminder of the value of a sampling frame. The
project focused on quantifying the bias in facial analysis datasets. By examining two phenotypical refer-
ence datasets for gender and skin type (IJB-A and Adience), Buolamwini and Gebru (2018) estimated that
the benchmarks were skewed toward light-skinned subjects— 79.6% of IJB-A and 86.2% of Adience. These
skewed distributions are not necessarily biased—it depends on whether they match the population of inter-
est. To illustrate the effect of class imbalance, the researchers systematically tested commercially available
phenotypical classification algorithms on a more balanced benchmark dataset. Their results suggest that

3The study found a number of contributing factors; However, for the sake of brevity, we focus on sampling biases in this
example.

286 CHAPTER 14. THE ETHICS OF DATA SCIENCE

misclassification rates can be as high as 34.7% for darker-skinned females, but close to 0% for light-skinned
males. This important research highlights the perils of pre-trained algorithms and reference datasets: while
they are intended to be generalizable, they might not reflect the populations on which they are applied.

Adjusting the bias. While the best strategy is to collect data without sampling bias, post-collection adjust-
ments can be applied under certain conditions. Let’s consider the tamest case in which each stratum is
represented in the data (e.g., each level of education attainment in a population) and the sample size within
each stratum is large (e.g., n ≥ 120). The intuition behind adjustments are simple: each record in the sample
represents some number of subjects in the population. For example, a full population census with a 100%
response rate implies that each record represents precisely one person. A 5% stratified random sample would
ensure that 5% of each observed stratum in a target population is represented, thus each record represents
n = 20 but holds equal weight. If the sample proportions do not precisely reflect the population, then
sampling weights can be employed to adjust the sample.

A sample weight (w) is constructed from the sample size (n) and population size (N) for each stratum of
interest (s):

ws = Ns

ns

Proportional representation in the sample allows for self-weighting, when all strata carry equal weight,
w1 = w2 = ... = ws. Otherwise, the sample weight can be directly applied to adjust estimates of key
parameters for inferential purposes and also mitigate bias in algorithms.4 When stratum s = 1 is under-
represented relative to stratum s = 2, then we should assume each record in s = 1 will carry greater weight
than s = 2 (w1 > w2).

To illustrate how to identify and adjust sampling bias, we simulate a set of cross-tabulations intended to
estimate income by education attainment. When examining Table 14.1, we can see two sources of bias.
Whereas two-thirds of the population does not have a college education, the same group captured in the
sample is substantially under-represented accounting for only 50%—a 17-percentage point difference. A far
lesser source of bias lies in the slight deviations in the mean income. If these biases are not addressed, the
mean income would be over-estimated by 12%. In contrast, an average weighted to reflect the population
would reduce the difference to only 1%:

ŷall = ncollege×wcollege×ŷcollege
N + nno college×wno college×ŷno college

N

= 40×250×84500
10000 + 40×500×41000

20000

= 55500

Table 14.1: Example of sampling bias in hypothetical education attainment strata.

Stratum Pop. (N) Actual Mean
Income

Sample (n) Initial Estimate Weight (N/n) Re-weighted
Components

College 10000 84000 40 84500 250 28167
No college 20000 42000 40 41000 500 27333
Total 30000 56000 80 62750 375 55500

4Most statistical methods and some machine learning algorithms provide facility to incorporate weights. In cases when this
is not possible, each record can be duplicated proportional (e.g., rep function) to their sampling weight to artificially impose
the weights structure.

14.2. BIAS 287

This example is a simple case, however. It is common for data to exhibit coverage bias in which entire groups
are omitted from the data due to poor data collection design or respondent non-response. Furthermore,
if the patterns in the data differ between respondents and non-respondents, the data can also suffer from
non-response bias. For an in-depth treatment of sampling, read Sampling: Design and Analysis (Lohr 2019).

14.2.2 Measurement bias
Measurement bias occurs when the data collection process skews values in a consistent direction. The skew
depends on defining what is “true” and depends on the subject matter and context. We describe two varieties
of measurement bias that are discipline-specific: instrumentation bias and survey-related bias.

Instrumentation bias. Let’s motivate instrumentation bias using sensors that collect data from physical
phenomena. Sensors come in many forms such as radiometers, radar sensors, gyroscope sensors, among
others. Instrumentation bias occurs in sensor data due to differences in implementation and imperfections in
the sensor itself. While some sensors are tested and calibrated by manufacturers before they are distributed,
this is not always possible and can require the data user to calibrate sensor data themselves. For example,
Nighttime Light (NTL) imagery has been collected for decades by the US’ Defense Meteorological Satellite
Program (DMSP). Even though the satellites capture imagery of the same locations on Earth for overlapping
periods of time, the brightness will differ from one instrument to the next. In order to construct a consistent
NTL time series, the imagery from each successive sensor needs to be analyzed for biases then adjusted to
a common benchmark (Zheng, Weng, and Wang 2019, Toohey and Strong 2007, Li, Zhou, and Zhao 2020).

In Figure 14.1, we simulate instrumentation bias by comparing two hypothetical sensors (blue and gray lines)
that measure the same phenomenon. The vertical difference between the two lines are a clear indication of
bias. In order to produce a consistent time series, simply substituting one series for the other will cause to a
level shift, leading to poorer data quality and false inferences. Instead, the bias can be removed by training
a simple linear regression:

ygrey = β0 + β1yblue + ε

Notice the regression model includes a β0 to quantify the vertical shift and β1 to correct for growth differences.
Applying the resulting model will mitigate observed biases in the blue line, yielding in a bias-adjusted orange
line:

ŷorange = β0 + β1yblue

While this calibration technique is simple, it is an effective step toward mitigating instrumentation biases
when two or more coincident data series need to be combined.

Survey-related measurement bias. Unlike instrumentation bias, measurement bias is more challenging
to detect. In fact, tracing its source is easily obscured by many factors. For brevity, we sub-divide survey
biases into two broad problem areas: cognitive challenges and rater reliability.

Cognitive challenges. The clarity and neutrality of a question can influence the quality of responses. Leading
questions, for example, can influence respondents to provide a particular answer —often dropping hints of
what might be expected. For example, a political campaign asked the following question “Should President
Trump and his campaign do more to hold the Fake News media accountable?” (Trump-Pence Campaign
2020). The term “Fake News” is a charged term that will elicit different responses depending on one’s
political leaning. Meanwhile, questions such as “Have you ever attended a Trump Rally?” are neutral and
clear.

In addition to the phrasing of the question, what it asks of a respondent can bias the response. In particular,
when respondents are asked to recall a past event or memory, the response might be affected by recall
bias. For example, asking respondents how much time they spent in traffic in the last week will likely elicit
upward biased responses. In contrast, patients who are asked by their doctor about their alcoholic beverage
consumption are likely to provide downward biased responses.

288 CHAPTER 14. THE ETHICS OF DATA SCIENCE

5

10

15

20

5 10 15 20
Time

Se
ns

or
 R

ea
di

ng

Figure 14.1: Simulated data from two sensors (blue and gray) exhibit a consistent bias.

In general, questionnaires should be put through cognitive testing before they are released into the field.
Cognitive testing focuses on understanding if questions can produce accurate answers and identify inefficien-
cies that obscure a question’s meaning (Alaimo, Olson, and Frongillo 1999). In many cases survey designers
will experiment with different formulations of the same question to understand respondent cognition. But
there are some simple rules of thumb that can vastly improve response quality.

Mathiowetz, Brown, and Bound (2002) argue that simple, single-focus questions are easier to follow than
compound-focus questions. Simplifying questions reduces the mental overhead to produce an answer. As it is
more challenging to achieve reasonable accuracy when asking respondents to recall complex life experiences
(e.g., recalling income from multiple jobs), the questionnaire could be designed to break down complex
concepts into a series of questions, helping the respondent to systematically recall specific experiences.
Furthermore, the respondent intake process can involve baseline measurements to obtain current or near-
past information to avoid long-term memory retrieval. Indeed, the art of asking questions is very much one
that is inextricably tied to human psychology.

Interrater reliability. Individual interviewers might deviate from survey protocols (e.g., read question as writ-
ten, avoid leading question, neutral body language) and add their own spin to the data collection process. For
example, an enthusiastic interviewer may positively bias responses while an interviewer with a disapproving
attitude may negatively bias responses. In other cases, raters (e.g., respondents, interviewers) may be asked
to make judgment calls. For example, Street Conditions Observation Unit (SCOUT) conducts visual surveys
of New York City streets to rate street cleanliness conditions—a sort of sanitation audit. One could imagine
that two raters could give vastly different ratings to the same street segment. For the ratings to be useful
performance management, inspector judgment must be consistent and reliable (SCOUT 2020).

Interrater Reliability (IRR) is a common method for assessing the consistency of two or more raters. It
examines how often raters agree in their ratings using measures of correlation. For continuous responses on
a numeric scale, IRR can be measured in terms of a correlation coefficient:

• Continuous responses can be measured using a Pearson’s correlation coefficient. For example, two
restaurant inspectors are asked to give 30 restaurants a numeric score for their cleanliness. A high
positive correlation would indicate that their rating approach is aligned.

• Ordered discrete responses can be assessed using a Intraclass Correlation Coefficient. For example, the
same two restaurant inspectors are then asked to provide letter grades (A through F).

• Non-ordered discrete responses can be compared using Cohen’s Kappa statistic (Cohen 1960). For
example, the same two restaurant inspectors are asked to issue grades in terms of pass and fail.

In all cases, IRR is merely a check. Perfecting the art of asking questions requires extensive planning and
design around every aspect of the survey experience, from formulating questions to training raters.

14.3. FAIRNESS 289

14.2.3 Prejudicial bias
While post-hoc re-weighting and calibration can reduce the effect of sampling and measurement bias, these
remedies might not be sufficient to detect and correct social biases. Prejudicial bias, in particular, occurs
when cultural influences skew the portrayal of certain groups, sometimes as stereotypes and caricatures—
social constructs that require substantial context and knowledge of the domain. These biases are hard to
detect, but when people are faced with them—often times when interacting with a data product—they are
easy to spot.

As data products become more ubiquitous, the effect of prejudicial biases becomes more real. Berlin-based
Algorithm Watch, for instance, found biases in Google’s computer vision services. While an image of a dark-
skinned hand holding a thermometer was labeled as a “gun”, the computer vision services labeled a similar
image with a light-skinned hand as “electronic device” (Kayser-Bril 2020). This finding indicates that the
training sample may portray dark-skinned subjects wielding weapons more often than light-skinned subject
or perhaps the labels were inappropriate, thereby perpetuating unfavorable stereotypes.

Datta, Tschantz, and Datta (2018) found biases in Google’s Ad Settings—a feature intended to allow users
to set preferences in the sort of ads that are displayed. The researchers found that when the gender setting
was set to female, the number of advertisements for high-paying jobs was less than when setting it to male.
Meanwhile, Bolukbasi et al. (2016) trained NLP algorithms on Google News articles and found that the
resulting word embeddings reflected deep gender stereotypes.5 Whereas the embeddings indicated that the
terms “maestro”, “skipper”, and “protege” are the most similar to the word he, occupations most associated
with she include “homemaker”, “nurse”, and “receptionist”.

Addressing biases already ingrained in data is quite challenging and there is no clear cut fix. Some researchers
have attempted to employ crowdsourcing to identify and remove biased instances (Knight 2019) while others
have developed mathematical fixes (Bolukbasi et al. 2016). Governance researchers suggest that environmen-
tal changes in the data collection process and use case design can help mitigate biases (Nicol Turner Lee
and Barton 2019). Until a consensus is reached, there is no better measure to counter bias than designing
use cases with well-defined target populations, inviting people with different views to vet and engage in
vigorous dialogue about the project’s intents, and conducting rigorous and continuous spot checks to assess
data quality.

14.3 Fairness
Fairness is an idea that many can support, but the spirit of the idea alone is not sufficient to operationalize
it. One of the best known fairness controversies involved the COMPAS algorithm. Produced by a company
called Northpointe, COMPAS was designed to predict whether a criminal defendant will recidivate in the
future. These risk scores are then used to inform decisions taken by judges in court. A study conducted by
ProPublica of 10,000 criminal cases found disparities in the model’s accuracy. Despite efforts to minimize
the impact of race variables in the COMPAS model, white re-offenders were twice as likely misclassified as
low risk than black re-offenders. Black defendants were also twice as likely to be misclassified as high risk of
committing violent crime compared to white defendants (Larson et al. 2016). In response, Northpointe argued
that recidivism risk scores are equal regardless of race, which allows judges to interpret scores without concern
about racial bias (Corbett-Davies et al. 2016). The case of COMPAS raises a valid concern for responsible
data products: there are divergent standards of fairness in use and a consensus on a gold standard has yet
to be reached.

In data science, we can think of fairness as follows:

An algorithm or model is considered to be fair if its outputs are not influenced by protected
variables.

Central to this idea are protected variables such as race, ethnicity, gender, sexual orientation, or other
traits. Algorithms should treat each group within a protected variable the same, but the question is what

5See Chapter 12 for a refresher on language models.

290 CHAPTER 14. THE ETHICS OF DATA SCIENCE

specifically should be equal? We describe two standards in this section: fairness in predicted scores and
fairness in predictive accuracy.

14.3.1 Score-based fairness
Score-based fairness revolves around statistical parity, which evaluates whether the chance of being assigned
a given predicted score is uninfluenced by a protected variable G (see Table 14.2). If a model can satisfy this
condition, the same proportion of each protected group will be classified as positive (Corbett-Davies et al.
2017, Zemel et al. 2013). Training data will almost certainly contain observable differences between groups—
some of which are deeply rooted in societal inequities that cannot be ignored. However, some differences
are due to legitimate factors (L) that can help adjust scores and enable a like-for-like comparison. When
adjusted scores are equal or similar, we can deem the algorithm to satisfy conditional statistical parity.

For example, an Urban Institute study of 60 American cities found that 38 cities have differences in median
credit scores of one hundred points or more when comparing largely white and largely nonwhite areas
(Ratcliffe and Brown 2017). The lives led by these different subpopulations follow divergent paths, marked
by differences in economic realities and access to opportunities. But scores could be adjusted for the number
of credit inquiries (l1), income bracket (l2), and the number of open credit card accounts (l3).

Table 14.2: Scored-based fairness conditions expressed for two groups (A and B).

Concept Condition

Statistical parity Pr(ŷ|G = gA) = Pr(ŷ|G = gB)
Conditional statistical parity Pr(ŷ|G = gA, L = l1) = Pr(ŷ|G = gB , L = l1)

Both statistical parity and its conditional formulation can be evaluated as an inequality. To satisfy a parity
condition, the difference between the probabilities of two groups (Pr1 and Pr2) should be less than a defined
threshold p ∈ [0, 1]:

Pr1 − Pr2 ≤ p

Note that the threshold p is arbitrary. We can take advantage of precedent, however. Some government
agencies have enacted affirmative action guidelines that can inform the value of p. The U.S. Equal Employ-
ment Opportunity Commission (EEOC), for example, recommends the 80% rule in which a protected group
should achieve at least 80% the rate of the highest-scoring group (U.S. Equal Employment Opportunity
Commission 1979). In this case, we can assume that the threshold can be set to p = 0.2.

While statistical parity ensures fairness in predicted scores, it ignores whether a model can guarantee equal
access to accuracy for all protected groups. We need to expand the inputs considered to also include observed
outcomes.

14.3.2 Accuracy-based fairness
Accuracy-based fairness seeks equal access to accuracy across groups. As seen in Table 14.3, virtually any
accuracy metric drawn from a confusion matrix or error function can serve as a quality of interest. Predictive
parity, for example, seeks a consistent Positive Predictive Value (PPV) for all protected groups (Verma and
Rubin 2018). The PPV is defined as the proportion of predicted positive cases that are found to be true
positives:

PPV = True Positives
Predicted Positives

14.4. TRANSPARENCY AND INTERPRETABILITY 291

As one can imagine, a higher PPV indicates that an algorithm is more effective in anticipating positive
cases and useful for decision making, especially in high stakes use cases in criminal justice, medicine, and
targeting. Poorly performing models with PPV < 50% are particularly egregious as a coin flip can deliver
better results. By identifying disparities in PPV, we can minimize disproportionate unfair treatment.

Table 14.3: Accuracy-based fairness conditions expressed for two groups (A and B).

Concept Condition

Predictive parity Pr(Y = 1|ŷ, G = gA) = Pr(Y = 1|ŷ, G = gB)
Predictive equality (FPR Balance) FPRA = FPRB, TNRA = TNRB

Equal opportunity (FNR Balance) FNRA = FNRB, TPRA = TPRB

PPV is just one type of accuracy. In fact, any accuracy metric—such as False Positive Rate (FPR) and
False Negative Rate (FNR)—can allow a data scientist to hone-in on different qualities of a model, which
in turn requires one to make clear value judgments on what constitutes an acceptable cost. Let’s take the
example of an algorithm that predicts re-offense of inmates who are candidates for parole. The algorithm will
invariably make mistakes. When the parole algorithm yields a large amount of false positives (i.e., someone
is predicted to re-offend but ultimately does not), it can unfairly deprive an inmate time outside of prison
and opportunities to contribute to society. Ensuring equal FPRs across groups is referred to as predictive
equality (or FPR Balance). A false negative (i.e., someone is predicted to be safe for release but ultimately
re-offends) re-introduces a risky individual into society. Achieving balance in terms of FNR is known as equal
opportunity (or FNR Balance).

14.3.3 Other considerations
A clever data scientist could attempt to achieve fairness across all three main conditions, namely statistical
parity, equal opportunity and predictive equality. However, Kleinberg, Mullainathan, and Raghavan (2017)
found that all three conditions cannot be achieved simultaneously. In their study of the fairness of the
COMPAS algorithm, Corbett-Davies et al. (2017) indicated that:

. . . Optimizing for public safety yields stark racial disparities; conversely, satisfying past fairness
definitions means releasing more high-risk defendants, adversely affecting public safety.

Both studies suggest that there will always be some degree of quantitative unfairness. There is no substitute
for careful deliberation. Selecting the appropriate metrics to balance is a discussion that policy makers and
data scientists need to have to ensure progress through algorithmic intelligence while minimizing societal
harm.

Fairness rarely is discussed when applied to policy-focused statistical analysis, yet models often form the
basis of policy options presented in memoranda and reports. Thus, it could be argued that fairness tests
should be applied in policy contexts. After all, policy recommendations are a simpler form of prediction.
As they are optimized for clarity, inference and narrative, models may be overly parsimonious and may not
achieve meaningful levels of predictive accuracy—the fairness of these models may be suspect and biased.
While these shortcomings will need to be addressed in the future, achieving meaningful fairness in policy
and strategy settings will likely require a ground change in the field.

14.4 Transparency and Interpretability
Before implementing a new algorithm or model in government, public officials may need to have a transparent
view into its inner workings, especially given the societal risks posed by bias and unfairness. Acknowledging
these growing concerns, some governments have made concerted pushes for transparency. The French govern-
ment, for example, passed the Digital Republic Act (law no. 2016-1321) that requires transparency around

292 CHAPTER 14. THE ETHICS OF DATA SCIENCE

decisions taken based on “algorithmic treatment” (Edwards and Veale 2018). Meanwhile, the City of New
York passed Local Law 49 of 2017 that created a task force to provide recommendations on transparency of
automated decision systems used in municipal agencies (Vacca et al. 2017).6

While the specific definition of transparency remains elusive, we can generally assume that it involves doc-
umentation about how the model functions and sharing of that information with a third party. Simply pro-
viding information is not sufficient to build trust, however. We can imagine that a mathematical white paper
would not likely be useful for less technically inclined audiences, while a high-level description that discloses
only one model accuracy metric would not provide enough detail for technical audiences. Instead, we need
to consider the steps beyond ordinary transparency—achieving a level of interpretability and explainability
to convey understanding.7

14.4.1 Interpretability
Interpretability is prized in any field that makes high stakes decisions, such as public policy, criminal justice,
medicine, and epidemiology. Practitioners need to be able to articulate how exactly a model functions. Not
only does it lend confidence in a model’s abilities, but it provides end users a chance to limit liability. Most
data science endeavors in government will start with an interpretable model. For example, FDNY’s first
generation FireCast model was a logistic regression. Firefighters and inspectors gave data scientists some
input on what variables should be included in addition to ones that data scientists found to be correlated.
After training the model, the impact of each variable could be clearly audited by data scientists by simply
reviewing the model coefficients.

While the FireCast example illustrates one case of an interpretable model, Lipton (2018) notes that:

The term interpretability holds no agreed upon meaning, and yet machine learning conferences
frequently publish papers which wield the term in a quasi-mathematical way.

In other words, it is a quality that we can recognize when we see it. Nonetheless, a definition is important
even if each research article offers a similar yet different explanation. Kim, Khanna, and Koyejo (2016)
suggests that interpretability is:

. . . the degree to which a human can consistently predict the model’s result. . .

While Miller (2019) proposes that interpretability is:

. . . how well a human could understand the decisions [of an autonomous system] in the given
context. . .

These first two definitions capture a human-centered perspective; however, they also leave ample room for
interpretation. In contrast, Rudin (2019) provides a definition that grounds interpretability in the qualities
of a model:

. . . An interpretable machine learning model is constrained in model form so that it is either
useful to someone, or obeys structural knowledge of the domain, such as monotonicity, causal-
ity, structural (generative) constraints, additivity or physical constraints that come from domain
knowledge. Interpretable models could use case-based reasoning for complex domains.

This more expansive definition highlights qualities that can be used to classify modeling techniques. In
particular, we focus on monotonicity and additivity as they are principal determinants of classic interpretable
models.8

Monotonicity allows for the relationship between input and target variables to always move in a consistent
direction over the range of an input. For example, a regression model could indicate that, on average, income

6With a bench of academic experts leading the charge, the bureaucracy and politics of local government prevented even
the most basic information to enable the task force’s work—ironically, leading to a lack of transparency for the transparency
investigation (Kaye 2019).

7The terms “Interpretability” and “Explainability” are both used in the debates centered on transparent machine learning.
While they have proximal meanings and are often used interchangeably, some researchers argue that there are differences.

8Recent research has begun to blend non-interpretable models for causal inference, such as Athey and Wager (2019). Thus,
we remove causality from this discussion.

14.4. TRANSPARENCY AND INTERPRETABILITY 293

rises monotonically from age 18 through 45. Monotonic relationships are useful for public policy problems:
as a policy treatment is applied more, the effect on a target population will generally change in one direction.

Additivity allows each variable to make a distinct contribution to a model. By adding together the partial
contributions of each variable for a specific subject (e.g., person, company), a model can both describe and
predict a target variable. For example, a model finds that smoking reduces average birth weights while
birth weight increases with long gestation periods. Adding together the two effects given an individual’s
circumstances produces an additive prediction.

When monotonicity and additivity are combined, we find that only one technique satisfies these constraints:
linear regression—the workhorse of the social sciences. Regression coefficients isolate the partial effect of an
input variable on a target variable, lending themselves to interpretation of the relationship between an input
variable and an output. The coefficients of two nested regression specifications can help triangulate whether
a measured effect is stable or true. We can follow each record’s values as it enters the trained regression
and replicate precisely how it arrived at its output at each step of the way. This quality, in turn, allows for
transparent what-if analyses.

Other modeling techniques have one of these qualities but not both. Logistic regression, for example, satisfies
monotonicity but the logistic transformation makes the formulation non-linear. Meanwhile, tree-based mod-
els, neural networks, and other models could preserve monotonicity if such a truly monotonic relationship is
present in the data, but otherwise fail to preserve other qualities.

For the intents of public policy, regression is the de facto choice for an interpretable model.

14.4.2 Explainability
While an interpretable model is a public policy favorite, it may not necessarily be the best solution for all
problems. These three prediction use cases illustrate the challenges:

• Imagery data are merely collections of pixels with different colors and brightness. To identify discrete
objects in satellite imagery, a regression cannot identify these latent qualities. Instead, pixels should
be convolved using deep learning to unlock deeply complex representations.

• A national model for predicting housing prices is trained on dozens if not hundreds of variables.
The precise price for an individual house depends on its qualities and the context of its local market.
Given the large number of markets in a country, building a regression that molds to each local market’s
conditions will be time-consuming and less effective than applying a random forest or gradient boosting
algorithm at scale.

• After a disaster, an emergency authority may have limited intelligence on where damage has and has
not occurred—the data might only cover small pockets in the service region. A visual survey will take
time to complete, so anticipating the extent of damage requires interpolation. If regression is used, its
monotonic properties will erroneously assume that damage grows with latitude and longitude. Instead,
case-based techniques like kNN can be more effective for interpolating damage patterns.

While these techniques are not interpretable, they are well-suited to extract predictive gains when micro-
decisions need to be made. Nonetheless, a data scientist needs to explain how the model arrived at its
conclusions. For these explainable models, the rationale is made clear by building another model to describe
the predictive model.

At the time of writing this text, the data science field has yet to converge on a gold standard for explainable
models. In fact, the techniques that have been developed offer explanations that focus on different aspects
of a model rather than only on one. Below, we describe a selection of explainable models.9

Permutation-based variable importance quantifies the importance of each input variable in terms of its con-
tribution to a model’s accuracy. Each variable’s importance is cleverly estimated by comparing performance
on a test sample with a modified version of the test sample in which a single variable’s values are randomly
shuffled. The greater the decrease in accuracy relative to the unshuffled predictions, the more important
the variable. While variable importance shows contribution to accuracy, it does not indicate the direction of

9For more on these three explainable ML diagnostics, revisit Chapter 10.

294 CHAPTER 14. THE ETHICS OF DATA SCIENCE

influence (e.g., X increases Y, X has no effect on Y). For practitioners in policy environments, the inability
to describe the direction of a relationship leaves much to be desired.

Partial dependence plots expose the shape of an input variable by calculating the marginal relationship of
the input variable at discrete increments on the target. The output is a plot that exposes the curvature of
the relationship, whether it is non-linear, monotonic, or other. While the plot illustrates the shape of the
relationship, a non-linear pattern can be hard for policy practitioners to grasp.

Local Interpretable Model-Agnostic Explanations (LIME) provide a record-level breakdown of how each vari-
able contributes to an additive prediction (Ribeiro, Singh, and Guestrin 2016). These model agnostic expla-
nations are built on a regularized regression that is weighted to the area around a selected point of interest.
The learned coefficients can then be interpreted as additive components that approximate the prediction.
For example, a machine learning model trained on a dataset with k = 12 input variables is applied to score
record i = 102 in a test sample, yielding a prediction of ŷi=102 = 0.9. The LIME approximation evaluates
each variable, finding that

• x4 contributes 0.7;
• x12 contributes 0.2;
• x13 reduces the prediction by 0.2; and
• the remaining deviation of 0.2 is captured in a bias (β = 0.2).

This additive break down of partial effects is quite intuitive. There are shortcomings, however. The approx-
imation can be an oversimplification, especially when the regularized regression yields a large bias (i.e., the
LIME model achieves low accuracy for a point of interest). Furthermore, LIME produces explanations for
individual points, thus computing the explanation for every point in a dataset may prove to be impractical.10
Instead, consider identifying exemplars that illustrate how the underlying model functions under different
conditions.

These explanations are approximations. As all models make assumptions, each explanation offers only one
perspective of what happens inside a model, but certainly is not the definitive explanation.

Guiding thoughts. To succeed as a data scientist in public sector requires engaging with stakeholders
and ensuring they understand the inner workings of a data science project. Without building mutual under-
standing, sophisticated data projects might not receive the necessary social and political support that enables
success.

When embarking on new projects, we recommend starting with an interpretable model. Not only do inter-
pretable models enable clear narratives, but that narrative serves as a platform on which trust can be built.
For non-technical stakeholders, interpretable models are a wonderful introduction to the field of data sci-
ence. As stakeholders become more comfortable with the subject matter, more complex techniques can be
considered.

Explainable models have a role when the qualities of the data require a more complex model to extract
predictive gains—when interpretable models are unable to fulfill the aims of a policy objective. The expla-
nations offered by these models will not be as clear or as accurate as interpretable models. Nonetheless, the
explanations give stakeholders the closure they need before a machine learning project can proceed.

As data scientists, we must remember that the vast majority of people are not familiar with the technical
aspects of our craft. When people are not familiar or knowledgeable about a new discipline, they may come
to dismiss it—it is a human reaction. Ultimately, it is the responsibility of the data scientist to build bridges.
Interpretable and explainable models are merely useful tools in that pursuit.

10See Staniak and Biecek (2019) for the implementation in R.

14.5. PRIVACY 295

14.5 Privacy
14.5.1 An evolving landscape
Data science can only enhance public policy if the Public entrusts their data to government agencies and
believes that the resulting data applications derive value for society. This trust is rooted in a ubiquitous
concern for data privacy:

Data privacy focuses on an individual’s control over their personal information, including the
collection, storage and use of that data. Successful data privacy enables data scientists to use
datasets without compromising the privacy of the individuals whose information is contained in
the data.

When using data for anything, we should assume that something is disclosed. The question is whether that
information is enough to re-identify and compromise an individual. For this reason, the privacy field has
not only developed best practices and regulations to guide the use of data in a safe way, but also technical
strategies that minimize the chance of disclosure.

Different privacy standards. Around the world, data protection regulations attempt to safeguard data
by limiting how it can be used. In the United States, there are data privacy laws that are domain-specific,
such as the Health Insurance Portability and Accountability Act (HIPAA). The purpose of HIPAA is to
protect patient confidentiality, but there are gaps in the law that can be exploited. At the time of writing
this text, HIPAA does not cover Direct To Consumer (DTC) genetic testing companies. Due to this gap
in the law, a 2018 study conducted by Vanderbilt University researchers found that 71% of DTC genetic
testing companies in the United States used patient data for projects other than testing. 78% of surveyed
companies shared genetic data with third parties without consumer consent (Hazel and Slobogin 2018).

While some loopholes can be exploited, certain governments have taken steps toward cohesive privacy policies,
especially to afford broad protections to citizens while providing corporations with well-defined uses of data.
For example, the European Union’s General Data Protection Regulation (GDPR) addresses transfer of
personal information for professional and commercial use. GDPR outlines key aspects surrounding privacy
such as lawful uses of data (e.g., perform tasks for public interest, “legitimate interest”), the rights of data
subjects, and the responsibilities of “controllers” and “processors” (Council of European Union 2014). While
broad regulations ensure coverage, they do require data controllers and processors to adopt new practices
and incur financial costs (DeNisco Rayome 2019). When companies are deemed to be in breach of data
privacy laws, the laws provide consumers the right to legal action. In 2019, French data protection watchdog
CNIL issued a $57 million fine to Google as it failed to comply with GDPR regulations (Dillet 2019). In
2020, Oracle and Salesforce were hit with $10 billion lawsuits for GDPR breaches (Page 2020).

Interestingly, government agencies entrusted with personally identifiable data are also governed by specialized
privacy laws. In particular, statistical agencies that are tasked with conducting research on sensitive data
and publish tabulations and micro data must institute and uphold disclosure avoidance laws such as the US’
(“Public Law 107-347: Title V - Confidential Information Protection and Statistical Efficiency (116 Stat.
2962)” 2002) and the EU’s Commission of European Communities (2002). As we will describe later in this
section, the science of disclosure avoidance has evolved as more data and computational technologies have
become available, leading some agencies to take arguably radical steps to achieve data privacy.

14.5.2 Privacy strategies
Whereas data scientists tend to be concerned when increased data privacy reduces the signal in the data, data
privacy professionals’ chief concern is re-identification—when freely disseminated data is used to identify
individuals. As more data is made available publicly, this risk becomes more real. For example, Rocher,
Hendrickx, and de Montjoye (2019) demonstrate a technique that can re-identify 99.98% of Americans using
only 15 demographic attributes. For a government agency, the only worse scenario is if re-identification occurs
due to the failure of an agency’s dissemination activities—unwittingly allowing confidential information to
be published.

296 CHAPTER 14. THE ETHICS OF DATA SCIENCE

Agencies go to great lengths to avoid the disclosure of identifiable information, especially if they are required
to publicly release insights and data. However, as more data is suppressed or randomized, the quality of the
signal in the data will degrade. Below, we describe three strategies that help reduce the chance of disclosure;
however, the risk will always remain as long as data exists.

Aggregation reduces the risk of disclosure by reporting only summary statistics. These high-level records
are useful for publicly communicating trends without transferring personal identifiers. For example, Google’s
Community Mobility Reports aggregate data collected from location settings to infer how people’s behavior
has changed during the COVID-19 pandemic. Aggregated by country, state/province and county, the mobility
indexes show benchmark travel behavior to offices, parks, retail stores, and other facilities relative to pre-
pandemic levels (Fitzpatrick and DeSalvo 2020). In government, statistical agencies such as the US Bureau
of Economic Analysis and the Bureau of Labor Statistics publish monthly aggregate statistics about the
economy drawing from surveys and administrative records.

While aggregated data omits personal identifiers, re-identification still remains a risk, particularly among
small cells—subsets of a population that have only a few observations. For example, because there are few
large scale aircraft manufacturing companies, publishing a statistic about the total cost of aircraft-grade
aluminum in every county of Washington State would likely disclose sensitive business information about
The Boeing Company’s operations in Snohomish County. Likewise, publishing a tabulation of cancer patients
by demographic characteristics (e.g., gender, ethnicity, age) might identify a specific patient if a cell has a
size of n = 1.

To mitigate the risk of disclosure, statisticians have developed cell suppression techniques to remove “sensitive
cells” that might directly expose private information (e.g., cells with < 5 observations) as well as “non-
sensitive” cells that can be combined to infer sensitive values (Cox 1980). The detection of non-sensitive
cells is reliant on modeling techniques that examine the unsuppressed table, apply primary suppressions of
sensitive cells, then identify which secondary suppressions are required to deduce the primary suppressions.
For more on suppression techniques, consider reviewing Statistical Disclosure Control (Hundepool et al.
2012) and the sdcTable package.11

Pseudonymization. Data cannot be anonymized fully without stripping it of its utility. Recognizing the
needs of organizations to be able to work with detailed data, pseudonymization helps to safeguard individuals
by replacing sensitive identifiers with ones that are artificially generated. In practice, the identities of indi-
viduals and their mapping to pseudonymized identifiers are stored in a reference table to which only few have
access, while all other data tables mask identities using pseudonymized identifiers. Thus, pseudonymization
does not eliminate the risk of identification, but rather is a risk reduction measure.

Artificial identifiers take on a number of forms—each with benefits and costs:

• A simple integer can be assigned to each new record, but can expose when the record was generated
(i.e., sequence) and encounters scalability issues as records become large (e.g., a billion records requires
10-digit identifiers).

• A random number generated identifier eliminates the risk of disclosing sequence information, but two
random numbers could be drawn by chance (i.e., collisions) and accidentally lead to duplicates.

• Meanwhile, a cryptographic hash maps text fields into fixed length identifiers. While they preserve
data quality, they can be cracked through “brute force attacks” in which an attacker cracks the code
through large scale, repeated guessing (Jensen, Lauradoux, and Limniotis 2019).

In all cases, simply applying pseudonymization does not mean data are safe for public release. Variables
that are not explicitly recognized as personal identifiers could also identify an individual. For example,
AOL released 20 million web queries from 650,000 users. Since many users will search their own name to
see what information has been published about themselves, it is then easy to tie the users’ search habits
to specific individuals (Arrington 2006). Pseudonymization should instead be viewed as a necessary aspect
of data stewardship that safely enables data science within an agency. For a hands-on introduction to
pseudonymization, review the DIY in Chapter 5.

11For more information on this R package, visit https://cran.r-project.org/web/packages/sdcTable/index.html.

https://cran.r-project.org/web/packages/sdcTable/index.html

14.6. BEYOND THIS CHAPTER 297

Differential Privacy approaches data privacy in terms of a mathematical representation of the privacy
loss as the direct result of disclosing information from a database. From examining results of queries, a
database is considered to be differentially private if it is not possible to determine that a specific individual
was included in the underlying data. Statistically, the distribution of each variable in the dataset would
appear unchanged if an individual is removed from the data (Dwork 2011, Dwork et al. 2014).

As laid out in Dwork et al. (2006), ε-differential privacy adds well-placed random noise (ε) on top of the query
results from a database. If more noise is added to a query, the results are less precise, thereby anonymizing
the data and making it less useful. Conversely, less added noise increases the precision of results and sacrifices
anonymity. These “noisy sums” cannot be viewed only as a one-time query to a database, but rather in terms
of multiple queries. While a data scientist can receive different noisy results when repeatedly submitting the
same query to a database, the results could be averaged to remove the effect of noise and retrieve the ‘true’
statistics. Thus, unlimited access necessarily means absolute disclosure prevention is not feasible. Instead,
a privacy budget should be set to reflect a data owner’s concern for disclosure—how much privacy loss is
acceptable? This budget limits the total number of queries that can be submitted to a database before access
is revoked. In turn, this budget forces explicit decisions on the trade-off between privacy for individuals versus
the usefulness of the data.

In a relatively short period of time, ε-differential privacy has seen adoption by tech industry giants such
as Apple (Greenberg 2017) and Google (Lardinois 2019). Perhaps the most notable push in government
has been made by the U.S. Census Bureau, which collects and disseminates socioeconomic data. In 2018,
the agency announced plans to apply differential privacy principles to the results of the 2020 Census. As
Census data is the lifeblood of social science researchers, prominent academics have voiced concern that
the protections will damage the quality of the data (Mervis 2019). Meanwhile, Santos-Lozada, Howard, and
Verdery (2020) found that had differential privacy has been applied to the 2010 Census, the results would
have been dramatically different for population counts of ethnic and racial minorities in smaller, less densely
populated regions. As differential privacy is only in a nascent state in government, the debate about how it
should be used will need to run its course before best practices emerge.

14.6 Beyond this chapter
Data ethics is indeed a sprawling field of inquiry that has yet to reach maturity. There is no doubt that
challenges will be studied and reported on in the research and popular press. Until consensus is reached,
we recommend following developments in the machine learning field as they are published. A modern data
ethics classic, Weapons of Math Destruction (O’Neil 2016) is an award-winning book that asks hard questions
about how algorithms and data should be used in an ethical manner.

The state of the science is becoming deeper and more specialized by the day. To dive into the technical
solutions, we recommend reading articles that are presented at the Association for Computing Machinery
(ACM) Fairness, Accountability, and Transparency (FAccT) conference that occurs each year.12 In fact,
much of the research cited in this chapter is sourced from ACM FAccT.

Lastly, ethical data science relies on thoughtful design—one needs to answer hard and tedious questions
to truly understand the strategic intent and purpose of a project. In Appendix A, we have enumerated a
comprehensive list of questions that can inform the design of a data science initiative. By working through
each question, one can develop a Concept of Product Operations Plan that helps data science teams articulate
the goals of the data project, how it will be used and sustained, outline ethical challenges, and serve as a
charter.

12Previously known by the acronym FAT prior to 2020.

Chapter 15

Developing Data Products

15.1 Meeting people where they are
Over the last thirteen chapters, we have provided a technical blueprint for working and transforming data into
useful information and tools. A data scientist can find patterns in data through exploratory data analysis,
extract the empirical and causal narrative, and use prediction to drive prescriptive action. However, there are
aspects of data science that are missing from this picture. It is rare that the data scientist sets public policy,
nor is it typical that a data product directly implements the change. Whereas policy makers need insights to
make set strategy and operatives in the field implement that strategy, data scientists provide the technical
expertise, data intelligence, and tooling to enable users to achieve their goals. The output of a data science
project is a data product—whether it is insights for reports, dashboards for monitoring, derivative data,
prioritization lists, or some other work product. It is possible for data scientists to dream and implement
a new data product, but there is one core rule on which success depends: the data product must be aligned
with a specific user’s needs.

Let’s take the example of a data science initiative focused on tort cases at the end of the Bloomberg
Administration in New York City. There are risks when running a government. Every so often, torts occur
when accidents and incidents cause harm or loss to people. The claimants can file a tort lawsuit against the
government to seek closure. In NYC, the average annual cost of tort payouts between 2008 and 2012 was
over $500 million—a challenge that mayors have continued to inherit from one administration to the next.
Although the NYC Law Department started 6,388 cases in FY 2012, the number of pending cases in the
backlog was 16,850 (NYC Mayor’s Office of Operations 2012). The City’s attorneys tended to settle cases,
which not only reduced the backlog but also minimized the risk of higher payouts when going to trial. In law,
there are rarely magic bullets. Settlements equate to a large bill for the taxpayers, yet not all cases have the
same payout potential. Although efficiency was prized when faced with a large backlog, as each settlement
closed, the already sizable cost to the taxpayer incrementally ballooned.

To improve the backlog situation, the Mayor’s Office turned to one of its data teams to work with attorneys
to investigate the problem. The data team, acting as an internal consultancy, initially focused on predicting
whether a case could be “won”—a convenient starting point from a research perspective. However, legal
experts highlighted that it was the wrong question—settlements resulted in neither “wins” or “losses”. The
team shifted its attention to predict cases that could result in a payout and their expected cost. To do this,
they assembled a treasure trove of metadata and textual data from case notes and administrative data,
then processed it into a training sample. The tort sample contained rich detail, such as the type of matter,
the city agency involved, the time elapsed since incident, the court, the law firm, the firm’s prior litigation
history, the number of plaintiffs and defendants, amount of legal research required, among other text-mined
variables. Given the unprecedented view into the inner workings of the legal system, strikingly clear patterns
emerged from the data. For one, the type of matter was enormously predictive of outcomes regardless of the
quirks of the case. For example, officer action cases tended to have a higher chance of payout than civil rights

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_15

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_15

300 CHAPTER 15. DEVELOPING DATA PRODUCTS

cases. The behavior of claimants likewise provided clues. The amount of time between an incident and case
filing was inversely correlated with payout potential—perhaps an indication of the quality of evidence. The
data scientists simplified these insights by training a pair of prediction models that could predict a payout
would occur with a AUC = 0.83 as well as predict the expected cost with a R2 > 0.5.

Indeed, the data scientists saw a clear path to improving lawsuit outcomes. By training an algorithm, a
screening program could seamlessly sort through thousands of cases, prioritize them, then provide a con-
fidence bound on the expected settled amount to inform negotiations (Figure 15.1). An upper and lower
bound cost estimate could then help lawyers navigate the negotiation process, understanding what is too
high or low. Despite these promising results, the City’s attorneys did not see the value in using prediction
models for their day-to-day activities. There was a feeling that the models only showed the obvious—when
presented with a case, an experienced lawyer can sense the chance of a payout and the amount it will be
paid, thus a model was a redundant use of technology.

Figure 15.1: A simple flow of a data science project for predicting lawsuit outcomes.

Both perspectives are valid, however. On the one hand, prediction models can provide as much insight as
expert opinion. When a data scientist is not careful to frame and communicate the value of the research,
the project runs the risk of falling into the So What Zone—when a project is viewed as a purely academic
exercise. On the other hand, policy audiences tend to overlook the fact that prediction algorithms offer
other competitive advantages, namely precision and scale. Whereas human productivity is limited by time
and number of available legal experts, a trained machine learning model could be effortlessly applied to a
massive caseload in a matter of seconds.

In the end, the data scientists were unsuccessful in making the case for predictive tactics. The project
invariably disappeared into the ether of city government.

The science rarely speaks for itself. Ambitious data science projects crumble when the focus is placed on
the latest algorithmic advancements rather than first establishing trust, understanding, and buy-in with
potential users. More often than not, the end users of data science have not been trained in the discipline
and are unable to appreciate the wonders of these scientific advancements. Success thus hinges on a data
scientist’s willingness to meet people where they are. If the target audience operates at a strategic level, then
data science should enable deeper understanding of the policy problem at hand. Even a simple memorandum
can do the trick. Alternatively, if thousands of complex public safety decisions need to be made every day,
then a data product be productionized algorithm that triages decisions to simplify coordination. The goal
of data science in the public realm is to design a data product to fulfill the needs of a well-defined user.1

1In tech teams, data products refer to a feature of an application that make use of prediction algorithms and data. In
government, data products can take on a broader range of forms as the pathways to impact are not only restricted to a piece
of software.

15.2. DESIGNING FOR IMPACT 301

In this final chapter, we reflect on practices that support successful data products. We start with thoughts on
how to design for impact—a holistic view of data science as part of a policy and implementation. Whereas
policies embody the values and direction of a society, the policy implementation involves identifying and
establishing decision points at which authorities can triage resources and affect societal outcomes. Data
science works best when built to support decision points—providing more information to make smarter
decisions. The discipline works best when it is designed to influence actions. In the second half of the
chapter, we turn our attention to the shapes that data products can take. Policy audiences tend to request
dashboards and presentations, but the best data science initiatives should be appropriate for the context
and the moment. We describe four data science work products and in what contexts are they best suited.
The chapter closes with final thoughts on the future of data science and public policy.

15.2 Designing for impact
There are many ways to affect change in public sector, but using data has typically held a role that informs
strategy rather than being used in daily operations. As we have illustrated, causal inference and prediction can
be applied at scale and enable a new generation of public services. However, social and public organizations
tend to be risk adverse, operating in accordance to well-defined processes. For sophisticated data science
projects to bring to bear a markedly improved level of accuracy and precision, data scientists need to be
masters of process, communication, and diplomacy. They need to find the decision points that dictate what
should be done.

Some decision points sit within everyday problems. FireCast, for example, was designed to fit within a
well-defined Standard Operating Protocol (SOP), specifically to serve as a recommendation system to guide
firefighters to buildings with the highest risk of fire. Other decision points are more strategic in nature. The
process of setting toll road prices, for example, may involve an econometric analysis on price elasticities and
the effect of price increases on vehicle volume. When co-created with decision makers that set direction and
users who will rely on the data product, data science can be a game-changing resource in innovative public
service delivery.

During the Obama Administration, technologists who were recruited from Silicon Valley focused their efforts
on identifying user needs. While many of these teams were engaged in web and software development than
data science, the approach is also effective for data product development. Data science projects can evolve
through the following four-step process as illustrated in Figure 15.2.

Figure 15.2: A four-step process for designing a data science project.

15.2.1 Identify a user need
All too often, policy teams describe users as “the public” or “decision makers”. While convenient for policy
narratives, these generic labels are not specific enough to articulate a clear user need for a data product.
The mark of a true need is whether you can name a specific person and a specific pain point.

If the objective is to guide inspections in the field, data scientists must go into the field to see what inspectors
see. If the objective is to streamline call center operations, then the data scientists must sit with call operators
to see their workflow. Having a personal connection with the target user allows you to develop a functional

302 CHAPTER 15. DEVELOPING DATA PRODUCTS

understanding of the problem space: what specifically is being decided, how would a prediction or a parameter
estimate inform the decision, how often does the decision occur, what is the cost of being wrong, what are
the attitudes toward using data and if there is even interest to try something new.

While these questions can help lay the foundation of a data project, they only scratch the surface. For a
more in-depth treatment, review Appendix A.

15.2.2 Size up the situation
Governments technology projects have a reputation of going over budget and never ending. To maximize
the chance of a success, size up the problem. In rank and file organizations, a senior officer will arrive on
scene (e.g., a fire, a battle) and evaluate the problem and identify potential solutions, then determine how
to engage. By answering a set of fundamental questions, you can rapidly assess if a proposed data science
project will be worth the time investment. Some of the core considerations are laid out in Table 15.1.

Table 15.1: Questions to inform a size up exercise.

Area Considerations

Use case Is the intention to infer patterns, predict outcomes, or prescribe action?
Decision cadence What is the decision time window? Can data be refreshed in time for

each decision? If there is not an operational time window, is this a one
off project?

Data acquisition Where is the data coming from? Can it be reliably obtained without becom-
ing a bottleneck?

Qualities of the data Are there many variables? If so, is the number of variables large relative to
the sample size? This informs the choice of the model. How many records
are complete? Are entire records missing or are records missing in ran-
dom cells? If the former, you might consider dropping records; otherwise,
consider imputation.

Targets (continuous) Are there many unique values? If not, maybe the target should be trans-
formed into a discrete variable to simplify and clarify the signal? If there
are many unique values, is there a central tendency? Is the coefficient of
variation large or small? If far greater than one, you will likely require
detailed data to capture extremes.

Targets (discrete) Are classes imbalanced? What is the size of the smallest class? If less than
5%, can two or more similar cells be combined to improve the signal of the
minority class? Does the output require class prediction or a probability
ranking for prioritization? If the former, consider balancing the classes to
facilitate prediction.

Infrastructure How will the data be stored and processed? Is there reliable computational
infrastructure to ingest, process, and store the data? Are compute resources
available to efficiently analyze and make available data outputs?

Output What should the output look like? How will the output of the product be
used? Should the results be made available in a particular form, like an
API or a report?

Maintenance How many different datasets are required to create the training sample? Are
there many dependencies? If a dataset is corrupted or no longer available,
what is the viability of the project? What data quality measures can be
constructed?

15.2. DESIGNING FOR IMPACT 303

There are, of course, many other questions that should be considered. But if the results of the size up exercise
are favorable and can be answered handily, then it may be worth the effort to build a “V1”.

15.2.3 Build a lean “V1”
All too often, data scientists strive for perfection at the prototype stage. While technical excellence is prized,
it has been known to prevent products from seeing use by the people who need it most. The “V1” (short
for “Version 1”) of a data product needs only to be a proof of concept (POC)—a tangible vision of what
could be if resources were put behind it. Therefore, V1s should be lean products. The faster one can show
the “thing”, the faster the project will garner support.

To keep yourself on track, consider adopting a practice from software development known as a sprint, which
is a time-boxed period of time of two to four weeks to deliver discrete tasks toward a goal. The concept of
a sprint is often used in connection with Agile Software Development, which is a methodology for delivering
a product and refining it through iterations. In so doing, sprints prevent excessive perfectionism and allow
products to evolve as more is learned about the problem space.

Start by listing all tasks and processes that must be completed in order to produce a V1, then work backwards
to map out timelines. For example, building a forecasting algorithm for the economy might involve

• investigate how to ingest and process alternative data sources;
• identify which variables are most correlated with the target and develop a variable selection procedure;
• identify which algorithms are most appropriate and estimate the trade-offs of interpretability versus

predictive accuracy;
• develop a procedure to train hundreds of thousands of different models in parallel;
• evaluate cost options of parallel computation;
• construct an outlier detector and data quality check;
• integrate all modeling steps with a scheduler; and
• write a research memo and presentation to communicate results.

The backlog, or master list of tasks, is prioritized so that dependencies logically flow from one to the other
while other tasks can be scheduled in parallel. In a team setting, one team member should serve as the
scrum master, one who can keep guide the team to prioritize the backlog, keep teammates on task, and
remove obstacles. During sprint planning, each team member takes a task from the backlog, then is given
an additional task once their first task is completed. Throughout the sprint, the scrum master calls for daily
standups to have each team member report on progress and blockers so that obstacles can be mitigated as
early as possible. At the end of each sprint, the team comes together for a retrospective (retro for short) to
debrief on successes and discuss what can be improved.

Delivery is the principal policy of data science—making data products is the best possible way to show the
superior outcomes that data can enable. Even if one is working as a team of one, being able to articulate and
enumerate a backlog instills discipline. A speedy but accurately delivered product is sure to earn attention
and respect.

15.2.4 Test and evaluate its impact, then iterate
Upon developing V1, present the results to close allies so that you can get open and honest feedback. These
trusted individuals are the sniff test that help areas for improvement so that the product can be refined
through additional sprints. Close allies can also help hone the quality of presentation.

304 CHAPTER 15. DEVELOPING DATA PRODUCTS

Early feedback will tend to reflect flaws in communication and framing rather than the quality of the product
itself. It is not uncommon for data scientists to provide a technical description of the work rather than a
functional narrative. While the technical details are important, they need to be provided with some context.
A data scientist working on a Random Forest model for predicting a medical problem might fixate on purely
technical aspects of the project:

“The Random Forest achieved an F1 on the OOB and Out-of-Sample of 0.8 and 0.81—which is
a partial truth as the minority class comprised 1% of the sample. While the variable importance
was x1 was 100 compared with x2 is 24. Compared with prior attempts, we were able to train
the model in only one-third the time.”

When the audience is unfamiliar with data science, the framing needs to be adjusted. Start with the context
first, then progress through a short narrative that is structured like a scientific paper (i.e., motivation,
methodology, results, then implications):

“The incidence of medical condition y has been growing in recent months reaching z cases.
Early warning diagnostics are believed to be inadequate, meanwhile the number of reported
cases has grown from 1:1000 to 1:100. To improve early warning tools, we constructed a flexible
algorithm on currently available blood panels to predict medical condition y. The results suggest
that variable x1 contributes the relative most to predicting this—roughly 4.2-times more than
the next greatest contributor. Model performance is nuanced, however. If we use this model for
prediction, we know that 90% of all positive cases can be predicted, but only 70% of predicted
cases are in fact positive. If deployed for diagnosis, the algorithm will rely on data from a blood
panel and provide probabilistic estimates of the presence of the condition.”

As you prepare to present to each new audience, spend a few moments to consider how they may react.
Think about what they are likely to think and feel and how do you speak so that you can get the point
across without compromising the technical details. Whether the point landed will be clear from the reactions.
Audience members who did not understand the data science project is will comment on cosmetic aspects of
the project (e.g., color of graphs) rather than the inferences (e.g., X caused Y). Whereas, expert audience
members will ask questions relating to project design, sampling, and math in general.

Not all feedback will be valid. Interpret it as you may, but be sure to identify the most compelling arguments
to focus on and drive improvements. Iterate the product direction, then run another sprint to improve.

15.3 Communicating data science projects
During the early stages of implementing analytics at FDNY, long time analysts at the Department told
the newly established data science team to “Meet people where they are”. While the team of millennials
were prepared to build futuristic data products, they heeded the advice of their peers. In practical terms,
meeting people where they are means to provide data insights in a form that people are ready to consume
as not everyone is a data scientist. In this section, we focus on how to structure and frame presentations
and written reports for public policy and government audiences—an art form that is not typically part of
a data scientist’s training. These two formats are crucial for communicating ideas in the public sector and
garnering support.

15.3.1 Presentations
In all phases of a data science project, presentations are a typical medium for communicating to audiences.
Presentations are particularly well-suited to persuade audiences of an argument or thesis, weaving the per-
sonality of the speaker with the visuals and words. Whether you would like to launch a project, provide an
update, or brief a target audience, presentations are an optimal format to pitch and sell an idea.

Structure. For most people, a perception exists that presentations are “easy to do”—quite the contrary.
Regardless if the audience is familiar with your endeavor, the presentation should always begin with a few
moments to contextualize why people have gathered and describe the central theme that should underlie the

15.3. COMMUNICATING DATA SCIENCE PROJECTS 305

entire presentation. The audience must be able to easily place the information in a mental scaffolding and
it is your job to create and place every talking point in that easily accessible scaffolding. One way to create
that scaffolding is to present a road map or outline of what will be discussed, then return to that outline
throughout the presentation to help the audience regroup.

Figure 15.3: Two distinct visuals in a deck.

Design. Speakers often present slides packed with bullet points, which then cue the audience to read snippets
of text rather than listen to the narrative. Many times presenters will simply read the slide, negating the
opportunity to use one’s voice to humanize the argument. Sloppy visuals can be designed without much
thought about how to bring to bear the power of esthetics in communicating concepts.

The choice of visual elements convey meanings and signal certain soft qualities. For example, Figure 15.3
presents two flow diagrams of how data flows through real estate price prediction project. The first diagram
(left) over-simplifies the data science project, failing to convey useful information. In addition, poor esthetic
design choices signal the work of an amateur. The second flow diagram (right) is furnished with some technical
depth to illustrate the mechanics of the project. Furthermore, the color palette makes clear distinctions
between elements and steps of the process without distracting from the meaning. Together, these qualities
signal a command over the subject area. The payout of spending time of the visuals can be quite substantial.

Even the way statistics are presented has an impact on how audiences treat the information. Regressions,
for example, will no doubt be used for causal inference and correlative analyses. However, only certain users
will be able to navigate and interpret a regression table. The table in Figure 15.4, for example, presents the
results of a housing price model in a format that is appropriate for academic research audiences, providing
point estimates and uncertainty around the estimates. By presenting the full table, the speaker gives the
audience a chance to think for themselves and should likewise give more time in the presentation to reflect
on the results.

Policy audiences, in contrast, are likely more interested in crisp insights, cropping in on specific elements
of the regression table—keep it simple and tell the story. At the same time, it is important to show just
enough technical firepower to signal that the work was well-designed and implemented. The bar chart in
Figure 15.4 plots the price of housing relative to a reference level, color coding each neighborhood’s estimate
by its statistical significance to show nuance of interpretation. By making use of negative space, the choice
of this particular graph is effective to emphasize the clear price spreads between neighborhoods, so much
so that the most expensive of the neighborhoods in the analysis are over 100% more expensive, on average,
than the lowest.

For a worked example, refer to an example presentation available at https://www.github.com/DataScienceFor
PublicPolicy/demo-presentation.

https://www.github.com/DataScienceForPublicPolicy/demo-presentation
https://www.github.com/DataScienceForPublicPolicy/demo-presentation

306 CHAPTER 15. DEVELOPING DATA PRODUCTS

Figure 15.4: Different ways of presenting regression results.

15.3.2 Written reports
While slide presentations have become part of the culture of most organizations, the ultimate medium for
facilitating deep understanding is a well-written report. A memorandum (or memo for short) is a natural
format to describe the problem in a technical and accurate way while having enough space to elaborate for
audiences that are less familiar with the subject matter. Writing a memo is a great exercise for formalizing
and articulating an overarching strategy, forcing data scientists to structure an otherwise exploratory process
in terms of a real-world application. It is, however, not an opportunity for one to bask in their intellectual
glory but rather should be focused on the audience. When done well, memos can inform policy makers of a
more technically valid way forward. And in strategy environments, memos are sometimes viewed as political
currency, serving as a reference point for building arguments.

A well-written memo provides unambiguous information to guide discussions. The statistician and visualiza-
tion expert Edward Tufte begins his workshops with a “study hall” involving reading material that ensures
participants have time to absorb the same information. Similarly, Amazon founder and CEO Jeff Bezos has
a preference for memorandum rather than presentations (Umoh 2018):

The reason writing a ‘good’ four page memo is harder than ‘writing’ a 20-page PowerPoint is
because the narrative structure of a good memo forces better thought and better understanding
of what’s more important than what.

In any case, written reports are a valuable tool that can reduce bureaucratic friction by virtue of demystifying
data science.

Structure. The structure of a memo is informed by its purpose. However, in all cases, the introduction should
clearly state the purpose and background to set readers’ expectations. Even when provided to a routine cast
of characters, memos should start with two to three lines to quickly jog their memories. Without the purpose
and context, readers may quickly get lost in the details that follow. While it may seem redundant, an
empathetic data scientist will recognize that there are competing priorities. Small recaps can go a long way
to lubricate the policy process.

There is often a perception that writing for policy audiences means stripping the content of all heavily
technical concepts. Quite the contrary. As data scientists are still fairly new in policy, explaining technical
concepts in a relatable way can help build coalitions around your work. Use analogies, imagined scenarios,
among other literary devices to concretely illustrate the point and why it matters to the reader. As more
people truly understand how to make use of your efforts, the support for data science will invariably grow.

15.3. COMMUNICATING DATA SCIENCE PROJECTS 307

Thus, the remaining two to four pages of the memo should furnish the reader with a working knowledge of
the problem or decision at hand.

Briefing memos are designed to inform stakeholders of a topic area or progress of a project—a sort of
crash course in four pages or less. The body paragraphs explore different aspects of the problem space.
Like a standard grade school essay format, each paragraph starts with a clear topic sentence and argument,
supported by evidence woven into narrative to accentuate the argument’s merits. For example, a data scientist
may be interested in implementing a nowcasting project for public opinion polls and would like to draft a
briefing memo to seed the idea. The memo could follow this structure:

• Introduction: What is nowcasting and why is it valuable? How do nowcasts provide preemptive intel-
ligence on otherwise lagging metrics?

• Body Paragraph 1 : What can a successful nowcast accomplish for our organization?
• Body Paragraph 2 : What is prediction and what is entailed? What can we expect from an initial version

of a nowcast?
• Body Paragraph 3 : Why is there a trade-off between interpretability and accuracy?
• Conclusion: What are some ways we can move forward with nowcasting?

An options memo presents paths that decision makers can take to address a problem, weighing the pros
and cons of each option. In a data science context, the options are different ways that a project can evolve.
For each option, the author should provide an overview of the potential solution, how likely the option is to
succeed, a high-level sketch of how to action upon the option, and an enumeration of notable dependencies
and contingencies. If appropriate, the data scientist should recommend a course of action. Following the
previous example, imagine that the data scientist is now ready to propose three options to decision makers:

• Introduction: Provide a recap of the nowcasting concept and highlight three distinct options.
• Body Paragraph 1 : Describe Option #1—real-time nowcasts are conceptually attractive, but may be

cost prohibitive to maintain.
• Body Paragraph 2 : Describe Option #2—less frequent monthly nowcasts equate to higher accuracy.
• Body Paragraph 3 : Describe Option #3—doing nothing equates to no additional cost but no improve-

ment.
• Conclusion: Recap the options, and if appropriate, make a recommendation.

In contrast, a research memo has a more scientific focus, laying out the aims, approach, results, and impli-
cations of a data science project. For quantitative researchers who have worked in policy circles, a research
memo is usually the end product of a data project, presenting a descriptive or causal analysis of a policy
phenomenon. Sometimes, the memo can be modified to also serve as a peer-reviewed article if cleared by
the chain of command. For data scientists, however, a research memo presents an opportunity to social-
ize new data science applications, especially to show the return on investment and potential impact of V1
applications. Building upon the nowcasting example, our industrious data scientist would like to scale her
nowcasting project beyond V1. Her first step is to draft a research memo:

• Introduction: What was the aim of constructing a real-time nowcast? What made it different from
other projects? What was the main finding?

• Body Paragraph 1 : Data & Methodology—What approach was taken and why? What considerations
factored into the approach? How accurate and stable are the data to support the use case?

• Body Paragraph 2 : Results—How successful was the project? Did the performance meet expectations?
• Body Paragraph 3 : Discussion—How can the project be applied? What are the weaknesses and strengths

over alternatives?
• Conclusion: Recap what was learned, areas for improvement, and next steps.

Style and Design. Judging the style and design of a memo tends to be a subjective affair. However, consider
this: written documents that have authority tend to be well-formatted and well-worded. For one, optimize for
readability and avoid packing the document with too much information. The memo header should be clearly
addressed to stakeholders while the subject line should be straight to the point, providing a clear idea of what
the document is about. Use space generously (e.g., one-inch margins, 1.5 spacing) and choose appropriate
font sizes (e.g., 11-point to 12-point font for body text). The font type carries an implicit meaning. Serif

308 CHAPTER 15. DEVELOPING DATA PRODUCTS

fonts carry more austerity and authority while sans-serif fonts carry a more modern connotation—choosing
the appropriate font sets the tone.

Graphs and tables can illustrate and support the memo’s principal arguments, but they can also distract
from the main point or reduce the available space if their value is not clear. Thus, consider incorporating
visuals when the point of a paragraph can be markedly bolstered by its inclusion. The color choices should
be carefully selected so as not to become the focal point of the document. While colorful graphics can make
your document more attractive, the main takeaway of your memo should not be your color choices but rather
the content of the text. Use color wisely.

Word choice and tone also contribute to how the document will be perceived. This text, for example,
frequently uses “we” and “you” as a means to make the content more approachable and conversational.
Memos meant to serve as a reference point should be written with an impersonal tone (e.g., avoid “we”,
“you”) and avoid contractions that are common in everyday vernacular (e.g., “don’t”, “we’ll”, etc.). The
flow of the writing has an impact on the reader’s ability to absorb knowledge. If possible, reduce the use of
parenthetical and footnotes that detract from the flow.

Lastly, the perception of competence can easily erode with repeated grammatical and spelling errors. Proof-
read, edit, and spell check the document. The best test of the polish of your work is if a reader who is
unfamiliar with the subject matter can absorb the content while finding minimal stylistic and technical
errors.

How can R help. When many statistics and graphics are needed to craft the argument, calculating, copying,
and pasting each piece of information is time-consuming and tedious, especially when the dataset is updated
or if assumptions are changed. RMarkdown is built to integrate code and text so that an entire analysis can
be refreshed and update a smartly designed document. In fact, this entire textbook was written using an
extension of RMarkdown known as bookdown. For a worked example, refer to an example written report
available at https://www.github.com/DataScienceForPublicPolicy/written-report.

15.4 Reporting dashboards
Executives and managers often ask for a dashboard as the end product of a data science project. The visual-
ization format has an esthetic allure that signals progress—something has been done. However, dashboards
are seldom used more than once or twice making it an expensive investment considering its development and
maintenance costs. This failure is rooted in a misunderstanding of the fundamental value of a dashboard: they
measure context around a specific decision point. Every metric in the dashboard should be well-researched
and communicated to the user so all are aware of its exact meaning, which in turn provides unambiguous
input into a specific action. This requires thorough investigations as to how the information will be used.

Dashboards are not only a tactical tool, but are also a technical feat of data engineering. The data needs to be
wrangled into an analysis ready form, requiring ingestion, cleaning, processing, and aggregation before being
piped into the dashboard. If intended for daily use, the data engineering process must be well-tested with
exceptional error-handling. The ROI of a dashboard is realized over time. As they are expensive to maintain,
the cost can be amortized through habitual use, serving as an evolved tool for implementing policy.

Structure. To get the most from a dashboard, let’s consider the case of a real dashboard in a car. A car’s
dashboard presents the speed, the fuel, engine status, among other data that help the driver make decisions
on the road. Without the dashboard, the driver can only make gut decisions, although some may argue that
drivers can be cavalier with their driving decisions even with a dashboard. Nonetheless, a metrics-driven
dashboard can be used to monitor an organization’s performance and inform what actions should be taken
at specific decision points. Furthermore, a dashboard can be host to both predictive and causal inferences.
The only rule is to ensure that the information is relevant to the decision point.

Dashboards should focus on a single decision point, providing just enough information to contextualize
the state of affairs while minimizing information overload. Each visual element should add to the user’s
understanding. The monitoring dashboard in Figure 15.5 provides the real-time status of water levels along
a stream in New York City. It is comprised of a times series plot that compares the actual level (blue)

https://www.github.com/DataScienceForPublicPolicy/written-report

15.4. REPORTING DASHBOARDS 309

against an alert threshold (red), rudimentary summary statistics of how likely a flooding event will occur,
and automatically generated commentary to help the user interpret the data and suggest courses of action.

Figure 15.5: Stream gage monitoring when warning logic is triggered.

The dashboard, however, sits at the tail end of a data science project. Data scientists must write the under-
lying code to conduct and automate an entire analysis that can be executed, without error. In many cases,
fresh streams of data can be downloaded through an Application Programming Interface (API) that can
provide querying access in a database. As illustrated in the process flow in Figure 15.6, the machinery of
this particular dashboard is written in RMarkdown, weaving together a number of processing steps:

• ingest data from a real-time API, then parse and clean it;
• lay out a dashboard;
• perform a time series decomposition analysis to extract probabilistic bounds;
• forecast water levels with a 24-hour horizon;
• compute implications relative to alert level with pre-determined recommended actions; then
• render two JavaScript-based packages to render interactive visualizations.

When executed in RStudio, the code runs through the analytical script, then renders a HTML file that
visualizes the results. Note, however, that this dashboard does not dynamically update unless the underlying
code is re-executed.

To update the dashboard on-the-fly requires the project to factor in hosting costs—expenses associated
with continuously operating a server that allows the dashboard to be available at any time. While R is
not a language designed for general purpose web applications, the R shiny framework allows R to serve as
the engine behind a visual analytics dashboard. While shiny is built for data scientists, hosting a shiny
application tends to be slow—interpreted statistical languages like R have their performance limitations.
Commercial software such as Tableau and Qlik, in contrast, are built on top of servers that are optimized
for speedy computation. However, commercial software also come with subscription and operation costs.

Design. It is easy to construct a dashboard with graphs. It is hard to design one that responds to new
conditions in the data. Mastering the element of timing is key.

While the commentary box is the least visually interesting element, a data scientist can provide a nudge
when the data changes. As the data approaches or reaches pre-defined alert thresholds, the dashboard will
use if-else logic to construct a commentary and instructions that are appropriate for the moment. In Figure

310 CHAPTER 15. DEVELOPING DATA PRODUCTS

Figure 15.6: Underlying data processing flow that generates the RMarkdown dashboard.

15.7, the commentary has been extracted from three days with different water conditions. Before flooding,
the dashboard uses the upper bound of water level confidence interval to warn of potential flooding. Just
before or as the data and forecasts suggest that flood waters will rise, the dashboard moves more direct
instructions. The commentary is short and to the point when water levels are normal.

Figure 15.7: In addition to the plots and statistics, dynamic commentary can help contextualize what actions
the user should take given the patterns being presented.

How R can help. With recent advancements in R, an assortment of packages can accommodate most
dashboarding use cases. Using RMarkdown along with the flexdashboard package as the base, a dashboard
can incorporate visual elements that can produce a dashboard, it only updates when the flooding dashboard
is re-run in RStudio. For the worked example for the flooding dashboard, refer to the project repository at
https://www.github.com/DataScienceForPublicPolicy/flooding-dashboard.

https://www.github.com/DataScienceForPublicPolicy/flooding-dashboard

15.5. PREDICTION PRODUCTS 311

15.5 Prediction products
Most data science projects in government produce strategic insights intended for presentations and memos—
their principal role is to inform strategy, direction, and decisions. But every so often, we see the possibility
of a tactical data product, one in which a prediction model can directly influence the actions that people take
in the field.

Because public sector agencies can operate reactively, it is only after an incident (e.g., fire) or event (e.g., elec-
tion) that action is taken to address a problem. However, if a predictive model is accurate enough, it can
predict the yet-to-be observed statuses for individual cases. The predictions can remove the cloud of uncer-
tainty and enable others to take action, usually provided in the form of lists and scoring engines.

15.5.1 Prioritization and targeting lists
Much like in the case of FireCast and election microtargeting, a prediction model applied to a universe of
interest yields ascore for each record. These scores can be sorted to create a prioritization or targeting list
to drive a policy intervention—both powerful and confrontational. Through lists, agencies can affect change
with a degree of precision (e.g., inspect a building given a high chance of a fire, provide counseling before
recidivism, etc.).

The question then is how to effectively make use of these scores? It ultimately depends on the policies that
govern the problem space. In some cases, all items on a list need to be addressed at some point, but some
need more urgent attention than others. These cases are best addressed by prioritization list in which items
are rank sorted by the outcome of interest. In the case of FireCast from Chapter 8, for example, individual
buildings were sorted based on the highest chance of fire, then firefighters can focus their attention on the
highest risk buildings.

Alternatively, a hit list limits the universe to only records that are most likely to result in the outcome
of interest, which improves the effectiveness of targeted interventions. Political campaigns, for example,
have limited budget but need to market candidates to the electorate. Each canvasser’s effort costs time
and money. Thus, focusing on “convertible” members of the electorate may yield higher hit rates than other
population segments. While these use cases are powerful and provide actionable intelligence, there are ethical
implications of targeting—particularly around fairness. Hit lists are an explicit statement of policy priorities
and the decision to deploy these lists should be carefully considered.

Simply building a hit list does not guarantee its use. Data scientists need to build trust in these lists by
providing the intuition behind the results. Lists also imply that someone is giving someone else an order
to carry out a task, which can be perceived as a loss of autonomy. One approach to build trust is to help
end users explore recommendations to understand why they are the obvious choice. Consider developing an
exploratory visualization to facilitate exploration of hit list results. For example, Figure 15.8 shows a snapshot
from an interactive dashboard using the prioritizations from the downed trees example from Chapter 10. The
interactive visualization uses the crosstalk package to integrate a slider bar, which filters the list based on
the prioritization score. The filtered results are then rendered on a map using the leaflet package while
individual records are shown in a table built on the DT package. The dashboard’s functionality could be
expanded to incorporate more filters to help users drill down and learn more about how the prioritization
works. To get started with exploratory dashboards, visit the following link for this worked example: https://
www.github.com/DataScienceForPublicPolicy/interactive-list.

15.5.2 Scoring engines
Some use cases need predictions to be available on-demand, which requires models to be pre-trained and be
available to score new data at a moment’s notice. Scoring engines have common place for extracting new
variables from unstructured data (e.g., keywords from photographs, sentiment from text) and have been
known to apply computer vision for augmented reality applications. A pre-trained model alone is not enough
to make a scoring engine. It needs to be integrated with software that make the algorithm usable for a
well-defined application. Like Iron Man, the scoring engine may know what to do but needs the machinery

https://www.github.com/DataScienceForPublicPolicy/interactive-list
https://www.github.com/DataScienceForPublicPolicy/interactive-list

312 CHAPTER 15. DEVELOPING DATA PRODUCTS

Figure 15.8: Prioritization visual tool.

around it to make it functional. We can illustrate the complexities of a software application in a pair of
examples in Figure 15.9.

When a consumer submits a credit card application, for example, the scoring engine sits in the middle of
the process. The information in the application is extracted and checked if it has valid information, then
pushed through the same transformations and processing that was applied to the data for training. Sometimes
additional variables were engineered from the data, which then need to be derived from the application. Only
once we transform the applicant’s data into the format that is expected by the scoring model do we push
new data into the pre-trained model. For transparency, the pre-trained model is likely a logistic regression,
which is quick to score results. However, some more complicated algorithms require more processing power to
score new data. The pre-trained model returns a single credit score that feeds into the financial institution’s
decision logic, which in turn returns decision to the applicant.

Computer vision services simplify access to neural network algorithms that have been pre-trained to examine
the patterns in photographs and return predicted tags and keywords as well as other “embedded” information.
These have become commonly available data science services made available by technology companies such
as Google, Microsoft, and Amazon. Computer vision services are typically a good tool for enriching a dataset,
by using another algorithm to predict information that would otherwise require an army of human analysts
to collect. A data scientist could loop through a large number of photographs or video, sending each to a
computer vision API. The API pushes the photograph into a data pipeline to process the image (e.g., re-
sizing, color adjustments, convert to matrix), then passes the processed data to a pre-trained neural network.
The model returns a list of tags that are associated with the photograph’s contents. The vector of tags is
passed to processing once again to package the data into a standardized form, then sent back to the data
scientist’s software for further use.

In both cases, the first step in making available the scoring engine is to construct an Application Programming
Interface (API). APIs simplify communication between two software applications by standardizing requests.
Specifically, it standardizes the communication with a server-side application and the application likewise
standardizes the output that results from the request. Computer vision, credit card applications, and even

15.6. CONTINUING TO HONE YOUR CRAFT 313

Figure 15.9: Scoring engines sit within more complex data applications that require software development
expertise.

visualization services like plotly rely on APIs to simplify the data science process. In fact, companies like
Amazon have mandated that all within company process be made possible through APIs to standardize and
control information flows (Mason 2017).

R and software development are not commonly seen in the same sentence. However, there have been advance-
ments to make APIs a possible output of a data science project. To get started with a simple worked example
of an API at the Github repository: https://www.github.com/DataScienceForPublicPolicy/interactive-list.

15.6 Continuing to hone your craft
The types of data products in use are so wide-ranging that your skill set is not likely to cover the full
gamut. For instance, a data scientist who focuses on communicating complex insights for strategic business
problems might not have the expertise to develop large scale productionized prediction systems. Likewise,
a data scientist who has more engineering skills may miss the nuances in policy. There invariably will come
a time when a stakeholder asks for a data product that you are not yet ready to deliver. This is why
many technical leaders treat data science as a team sport—everyone can pitch in. While teams comprised of
complementary skill sets can build better data products, team members need to also have overlapping skills.
There is strength in redundancy—more people who are expert in a subject area can lead to more robust
vetting of ideas for even stronger products. While data scientists can be specialists, they should be familiar
with all aspects of data science and software engineering pipelines.

Indeed, the most employable data scientists can switch between two or more coding languages and frame
problems from policy, statistical, and engineering perspectives. In this text, we have emphasized pertinent
aspects of data science for public policy—but to work across domains requires more study. Below, we highlight
a few skill areas that should factor into data science.

Dataset Design. While the age of big data has been filled with great potential, the representativeness
of data is something that cannot be handled by software, but rather a command of basic probability and
statistical theory. In fact, the key issue that is often overlooked in data science projects is whether the sample
design—or how the data is collected—is appropriate. Policy makers may at times suggest that more frequent,
larger samples from self-selected sources are better than smaller, randomly sampled data sources. Whether
one data source is better than another is dependent on the application. When using any sample, one assumes
that it is a suitable approximation of the target population.

For example, a model designed to help Medicare recipients should not be built on a sample of college
students. Understanding the basics of set theory—or the study of collections of objects—can come in handy
when planning your data. The generalizability of the data, on the other hand, depends on how the sample

https://www.github.com/DataScienceForPublicPolicy/interactive-list

314 CHAPTER 15. DEVELOPING DATA PRODUCTS

is collected. Data collected through random sampling, or sourced through random selection from a universe
of all Medicare recipients, would arguably be more generalizable than a convenience sample collected from
a regional health care provider. For further reading, consider Sampling: Design and Analysis (Lohr 2019) as
well as Experimental and Quasi-Experimental Designs for Generalized Causal Inference (Shadish, Cook, and
Campbell 2002).

Statistical Analysis and Modeling. Stata, SPSS, and SAS have traditionally been the empiricist’s weapon
of choice in public policy. While these software enable estimation and causal inference, they are best suited
for academic research and traditional social science workflows. Knowledge of an analytical language such as
R and Python can not only cover analytics, but the rest of the data science pipeline. R is the language of
choice of statistically minded data scientists focused on inference and smaller scale prediction—appropriate
for strategy problems and moderately paced prediction projects (e.g., decision time frame is a day rather
than real time). Python, in contrast, makes large scale data product possible—appropriate for any problem.
The choice of language tends to be rooted in one’s technical upbringing, but having some command of
both languages is valuable in the modern workplace. For further reading, consider Python for Data Analysis
(McKinney 2017) to expand to one additional data science language.

Data Processing. While much of data processing could be handled with Python or R, there are clear
challenges as data becomes larger and more complex. An 100 terabyte dataset is not easily extracted and
transformed on a laptop with 500 gigabytes of storage and eight gigabytes of memory. To handle large datasets
requires heavier infrastructure, such as cloud computing and storage on Amazon Web Services or Microsoft
Azure. With larger infrastructure comes larger costs that tend to be billed based on the type of cloud service
(e.g., server build, storage size) and how long it is used. To use the infrastructure, we need computational
software that coordinates multiple servers to simultaneously work on processing and analytical tasks. Apache
Hadoop is a set of software utilities that enable distributing processing. Rather than having one server to
store and process a large dataset, Hadoop distributes the data storage over multiple servers (or nodes), then
executes a processing command for a batch of data simultaneously across servers. Distributed computing
reduces processing times by many fold, approximately proportional to the number of nodes. Apache Spark
is another framework that enables real-time data processing over clusters of servers, but works with data
in-memory. The two frameworks are popular and address different problems, some requiring immediate
attention while others can wait a little longer for processing. The languages typically used to work with both
Hadoop and Spark include Python, Java, R, and Scala. For further reading, consider Spark: The Definitive
Guide (Chambers and Zaharia 2018) to scale your work in production environments.

Querying. Data are often stored in databases that keep information in a standardized, manageable form.
To extract subsets of relevant data, knowledge of a querying language is a must. SQL (Structured Query
Language) is the go-to language for tabular databases, allowing data scientists to subset, join, aggregate,
and process data. In addition, SQL can be used to manage databases. However, the data may be too large
to efficiently query in a typical relational database. For large amounts of data, a data warehouse is a more
efficient solution. When processing data with Apache Hadoop, for example, Apache Hive is a software that
handles large-scale data warehousing, which also relies on a form of SQL to query data.

Visual Communication. Visualizations should help people develop an intuitive understanding of the prob-
lem space and data science project. However, some visualization forms of more appropriate from some audi-
ences than others. Likewise, the technologies are different as well.

• Notebooks. Code notebooks are an interactive format to weave code, visuals, and text. In R, RMarkdown
makes it possible to create documents, presentations, and dashboards. For more technical audiences,
Jupyter Data scientists can share Jupyter notebooks with one another in R or Python, illustrating
their research and coding processes in an interactive, replicable environment.

• Dashboards. Similar to the flexdashboard example, dashboards are a good choice for supporting
operational decisions. For more scalable solutions, dashboarding software like Tableau and Qlik are
more easily maintained.

• Custom visualizations are useful for telling stories in new and exciting ways that are not otherwise
possible through standard dashboards. Newspapers such as The New York Times and The Washington
Post rely on interactive visuals to tell their stories. Each interactives visualization is built with a trio

15.7. WHERE TO NEXT? 315

of web development languages, namely Hyper Text Markup Language (HTML) to construct a web page,
Cascading Style Sheets (CSS) to apply styles to the page, and JavaScript (JS) to enable interactivity.
While HTML and CSS are fairly easy to learn, JavaScript along with visualization libraries like D3.js
are arguably more challenging to master, but are well-worth the effort.

Verbal Communication is critical for the success of any data science pursuit. Faster you become comfort-
able speaking and pitching ideas to large audiences, the more support you will foster for your pursuits. There
is no better way to learn to communicate complex data science concepts than to force yourself to speak at
meetings and events. But more importantly, learn to modulate your tone and word choice depending on the
audience. To get into the habit of speaking as a technical leader, aim to speak to one technical audience
and general audience each year. As one can imagine, the range of technical audiences can be quite wide.
Academic audience will likely fixate on the intellectual contributions and if the work fits in the traditions
of the field. In contrast, a forum of practitioners might be interested in the impact of your work and the
architecture of your approach. In any case, great speakers know their audiences and their material like a
plane on auto-pilot—rehearse and practice with trusted colleagues who represent those distinct audiences.

15.7 Where to next?
Data science is increasingly absorbed by organizations working in various parts of society. But as an orga-
nization becomes more mature with its use of data science and as teams grow larger, it is also likely that
one’s latitude to work on all aspects of data will be far diminished. As a result, a data scientist in an already
data-driven company tends to be a specialist. In contrast, public sector agencies tend to have smaller bud-
gets and smaller data science teams. The lean budgets force data scientists to be more creative and clever
with their craft. In addition, the societal problem space is far larger than most private sector companies.
This combination makes public sector a target-rich environment, affording an ambitious data scientist the
opportunity to be involved in virtually all aspects of the data science pipeline. In short the public sector is
a great training ground to become a versatile data scientist.

The additional freedom comes with the need for a keen awareness of society’s attitudes toward data science.
Most people, regardless of industry, are not familiar with what goes into data science. Public discourse around
data science and machine learning has taken a more defensive stance, focusing on how artificial intelligence
will lead to job loss and a fourth industrial revolution. Artificial general intelligence, or algorithms that can
think generally like humans, is still science fiction for the foreseeable future. Instead, what is possible at
present is the use of data science to help bring increased accuracy and precision to policy decisions—jobs
are not lost, but rather the effectiveness of people is improved. Until people become accustomed to this new
paradigm, data science is viewed as a threat.

In public sector, working the data science way is still quite novel and relatively abstract. The extent to which
data science plays a role in government and social sector is dependent on communicating an inclusive vision
of how data science fits into public service. Data science is not the solution to policy problems, but can be a
game changer in how governments deliver services. But public servants and constituents need to see its value,
and driving adoption is a matter of meeting people where they are. Every data scientist has the responsibility
of convincing others that their proposed course of action is the right, most equitable, most accurate and
most natural. It is only through building trust with your stakeholders will you be able to affect change.

Chapter 16

Building Data Teams

Like private sector, data science has swept government by storm. Teams have been recruited under a simple
assumption: good things can happen if you give smart, eager people some data. Indeed, the earliest data
scientists in public sector had the opportunity of a lifetime to explore untapped datasets and affect change.
But the technical competence alone has not enough to affect change—much of government is not currently
set up for data science. The technical inputs for data science (e.g., data, software, and infrastructure) were
often not mature enough to accommodate data science projects. For example, data can be trapped in hard-
to-use PDF files. In other cases, a dataset can be scattered across a disparate assortment of Microsoft
Access databases. And in the worst case, data simply does not exist. Without these fundamental ingredients,
agencies are forced to start from square one and engineer their own data and systems. Even when analyses
and products are successfully produced, stakeholders might not be able to appreciate quantitative insights
or support targeted action.

While data scientists can quickly build prototypes, the goal of innovation is to deliver a sustained change.
Thus, to succeed in data science in government requires more than just technical skill. One needs to have
empathy for those who have successfully operated public service for decades without the use of machine
learning. It also requires the patience to first understand an agency’s culture and processes, then adapt data
science strategies to that environment. Data scientists need to hone their communication skills and build
trusted relationships with internal partners. By mastering soft skills, data scientists can help agencies evolve
and appreciate what is possible through data science.

This chapter is aimed at two audiences within public sector agencies: managers and data professionals. We
outline structural issues that managers should consider when building their first data science team. We
also provide aspiring data scientists a glimpse of what lies ahead. To start, we describe how to establish
an operating baseline—a mapping of key factors that determine the viability of a data science team. We
then describe a selection of operating models that are suited for different policy objectives and set up the
relationship that data scientists will have with the rest of the organization. We end the chapter with a review
of roles in data science teams and how to structure the hiring process.

16.1 Establishing a baseline
While Davenport and Patil (2012) suggest that the data scientist role is the sexiest job of the 21st century,
not all organizations will be ready to reap the benefits. Not only do data scientist roles tend to be expensive to
employ, but there is a steep learning curve that new managers will need to climb before they can effectively
harness and deploy these specialized roles in the field. Without proper preparation, one runs the risk of
having expensive human capital on staff without a clear path to affect change.

Before hiring any data scientists, prospective hiring managers should map out the opportunities within an
agency by establishing a baseline. The baseline maps out all of the key stakeholders stakeholders and whether

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2_16

317

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71352-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-71352-2_16

318 CHAPTER 16. BUILDING DATA TEAMS

their needs can be addressed through data science. These needs motivate a team mission, inform the first
project ideas, and guide prioritization of a project roadmap (i.e., the progression of projects). Perhaps most
importantly, the baseline contains the pertinent details that underlie a funding pitch to agency executives.

Scouting the problem space. Data science teams need the right conditions to flourish. To make sure
your agency is ready to invest in data, let’s start with scouting the problem space by considering these five
foundational issues:

• Which problems do internal stakeholders need help to solve? The real objective of this question is to
identify stakeholders who will be the allies who open doors, shape the problem space, and voice support
for the data science team. There will also be unwilling stakeholders—these can be won over after initial
successes.

• Who are the people who should be hired to solve problems? While it can be tempting to hire a PhD in
astrophysics and an expert econometrician, smart people can get bored easily and expect the autonomy
to explore problem spaces. But hiring inexperienced staff might require a significant amount of guidance
and looking after.1

• What data are available? Ideally, data is available in a machine-readable format (e.g., CSV, XLSX,
JSON) that requires less preparation to use. However, if data are stored in non-machine-readable
formats (e.g., PDFs, images, and hardcopy), the cost of launching a data science initiative will be
substantially higher and the time to first success will be delayed. Data availability is thus important
as it will inform how you will manage expectations.

• What space will the data science team occupy in the agency? The team will need to report to an office.
How the data science team is positioned relative to senior executives will determine their autonomy,
but also how much stakeholders will trust them.2

• How will funds be raised to hire and sustain the team? There are “different types of money” in
government. Some funding lasts for a single appropriated budget year and can be renewed each year,
while other funding has no time limit. These budgetary nuances matter as they can influence whether
staff are permanent employees or hired on a fixed term.

The answers to these five variables can inform how to structure the team, its mission, and its operations.
But where do we find the answers?

Searching for answers. Data science projects should be technically exciting, but it is easy to create ideas
that have little practical value. One could construct mental models of which agency issues can be solved
using data science, but the fact of the matter is that gaining support on new greenfield issues is resource
intensive and political. Instead, consider building the team’s baseline by reviewing the agency’s strategic
plan. Not only does the strategic plan describe what the leadership team deems to be important, but it also
indicates which officials are in charge of priority issues. Data science projects will be far easier to pitch and
fund if efforts are put towards addressing the strategic issues. Then, it becomes a matter of figuring out how
data science fits with the key stakeholders.

When engaging in stakeholder conversations, take the opportunity to learn about strategic issues and build
relationships. Taking a learning posture forces one to listen and gather information about a problem space.
This relaxed posture also allows prospective stakeholders to engage within their comfort zone. Otherwise,
hard selling a data science initiative from the get-go can be seen as political or aggressive, which in turn can
cause prospective stakeholders to take a defensive stance in order to side-step the risk of being dragged into
a science experiment.

Through these discussions, it will become clear that data science is not be relevant to all priority issues. To
narrow the field, we recommend ordering the strategic issues list based on pragmatic considerations:

• Focus on issues that can show momentum and progress early in the team’s tenure. Early and frequent
signs of progress will inspire confidence in the newly formed team, thus initial bets should avoid
scenarios where data is sparse or unavailable—without data, collecting new data will be time-consuming
and will only slow the delivery of wins.

1We will describe different data science roles later in this chapter.
2In general, higher up the ladder one is, more cautious stakeholders will be.

16.1. ESTABLISHING A BASELINE 319

• Prospective projects should be coupled with clear decision points. By placing data products as a tool
for reducing uncertainty and increase confidence in decisions, we also ensure that the data team plays
a concrete role in a recognized process in the agency’s operations.

• New teams are fragile. Any amount of resistance from stakeholders can shake the team’s confidence.
To protect the team, prioritize prospects that are sponsored by stakeholders who are willing to try
something new.

The intersection of these three criteria marks the sweet spot.

Drawing from your newly gained knowledge of the strategic issues, focus on sweet spot issues and develop
a few high-level project ideas.3 These project ideas should be conceived only at a high-level, whereas “in
the weeds” details should be left to the future data science staff to explore and apply their craft. In other
words, set the vision, but not the solution. With these project concepts in hand, schedule follow up meetings
with stakeholders to confirm what was heard in the exploratory discussions, then describe what is possible.
Notice that technical details only enter the picture after foundational relationships have been established.

Articulating the mission. From day one, a new data science team will need a mission to guide how it
selects its first initiatives. Without a mission, teams could easily drift from one task to the next without
leaving lasting change. Some missions are lightning focused on one issue, while others are quite broad.
For example, the mission of the Alan Turing Institute—the United Kingdom’s national institute for data
science—is as follows:

Our mission is to make great leaps in data science and artificial intelligence research in order
to change the world for the better. Research excellence is the foundation of the Institute: the
sharpest minds from the data science community investigating the hardest questions. We work
with integrity and dedication. Our researchers collaborate across disciplines to generate impact,
both through theoretical development and application to real-world problems. We are fueled by the
desire to innovate and add value. (Alan Turing Institute 2020)

The Alan Turing Institute has a national-level mandate to support almost any field and is allocated the
funding to enable its far-reaching mission, thus a broad mission is appropriate. But not all teams will have
the resources to sustain such a broad mission. In fact, successful new teams will typically be resourced to
focus on a specific area within an agency’s operations and will only expand to new areas once it has proven
itself.

To identify the right-sized mission, we can draw from the project ideas developed from stakeholder insights.
Start by mapping each project idea to one of three types of use cases as described in Chapter 14. As a
refresher, Table 16.1 summarizes these use case types along with their objective and outputs. In addition,
determine if project ideas will support one or multiple stakeholders. The diversity of use cases and number
of stakeholders will point toward a broad or narrow mandate. If project ideas are concentrated within one
area, then it may make sense to craft a narrow mission. For example, if projects require machine learning
to identify unfair practices among financial lenders and help target regulatory activities, then the mission
could be:

Our mission is to ensure that consumers have access to fair financial services without fear of
unfair lending practices. We protect consumer welfare by monitoring and targeting bad actors
who reduce the quality of the lending market.

In contrast, project ideas could cover all three use case types, then a broader mission statement would be
more fitting. In either case, articulate a mission, then revise it as needed.

3See Chapter 15 for guidance on designing data products.

320 CHAPTER 16. BUILDING DATA TEAMS

Table 16.1: Three categories of data projects.

Category Description Outputs

Reporting Provide the metrics and tooling that help stake-
holders monitor and understand operational issues
and make inform decisions.

Dashboards, tables

Insights Parse and analyze complex, layered questions to
identify key patterns that re-risk strategic deci-
sions.

Tables, written reports, visualiza-
tions, slide decks

Prediction
products

Engineer a product that draws on data and pre-
diction algorithms to address a user need.

APIs, software, visualizations

In addition, project ideas should be organized into a project roadmap—or a plan that outlines when each
project will be started and delivered. The order of the projects is important. Some projects will have depen-
dencies while other projects have political importance. Begin by classifying each project idea by their time
sensitivity—i.e., which projects will need to be addressed first and which are longer term investments. While
there is no absolute right way of constructing a roadmap, prioritizing projects by time sensitivity is a reason-
able approach. For example, a housing agency has a growing backlog of maintenance requests and its resident
population is growing steeply. An algorithm is needed to optimize how maintenance crews are assigned to
projects to quickly reduce the backlog. This means that before the algorithm can be researched, the data
team will first need to build data pipelines that collect data on how maintenance is currently being handled.

Roadmaps are an evolving management document. They are the operational plan that reflects how the team
will fulfill its vision. And while it is tempting to change the roadmap to shift the team’s attention, keep in
mind that it should be updated at most once a month in order to give teams enough time to make meaningful
progress.

16.2 Operating models
The data science team’s operating model not only sets ways of working but also helps stakeholders understand
how to interact with the team. Some operating models give a senior executive more control over the roadmap
while other models afford data experts the latitude to prioritize projects. In this section, we describe four
operating models.

16.2.1 Center of excellence
From the perspective of an agency executive, perhaps the most desirable team model is a Center of Excellence
(CoE). Staffed with technical experts, a CoE model concentrates deep expertise in one office and is afforded
the autonomy to identify and research key problems. As CoEs focus primarily on research, the payoff will
take time to be realized. And since it is challenging to schedule deadlines for research projects, deliveries are
infrequent and should instead be viewed as an intellectual investment for the good of the agency’s knowledge
base.

CoEs are often staffed with a cross-section of data professionals (e.g., data scientists, data engineers, etc.)
and attract candidates from rigorous academic backgrounds who crave academic freedom. While agency
stakeholders can benefit from osmosis of cutting edge practices, that freedom can be easily spent on unrelated
foci if not channeled. To bring structure to that freedom, successful CoEs have a well-defined mission. Will the
CoE focus on researching the economy? Or will it focus on engineering software for reducing climate risks?
Whatever it may be, the mission must also be accompanied by governance that helps agency stakeholders
get the most from the CoE.

Figure 16.1 illustrates how a CoE can be operated. CoE staff can propose projects as inspired by the
issues that the agency faces—they determine which issues are most worth their time. The head of the CoE
approves each project’s direction and briefs relevant stakeholders on progress. When pressing matters arise,

16.2. OPERATING MODELS 321

Figure 16.1: Center of Excellence. Data scientists identify problems worth solving, which are then scoped
and steered by the CoE’s manager. The manager then briefs relevant stakeholders on progress.

the manager can assign projects to team members; however, if done too often, staff may feel the loss of
freedom to conduct the research and seek opportunities elsewhere.

Pros. Assuming funding is available, obtaining approval to build a CoE is an attractive idea as it injects
fresh blood into an agency. For prospective staff, the intellectual freedom is appealing, and with the right
caliber staff, research outputs can be technically impressive and make for suitable content for peer-reviewed
research articles—a mark of technical excellence. The center serves as a source of innovation for other units
in the agency, actively educating staff on new possibilities.

Cons. Finding and attracting top talent is expensive, thus intellectual freedom and other perks will no
doubt be selling points. However, with too much research freedom means that projects can stray away
from relevant policy issues, especially as CoEs tend to operate as standalone offices that are not beholden to
operational priorities. This can lead to an unfavorable perception that a CoE is not responsive to stakeholders.
Furthermore, as project deliveries in research environments are infrequent, these offices are not typically well-
suited for operational tasks.

In short, the CoE model is an excellent option for generating data science thought leadership, but not appro-
priate for operational excellence.

16.2.2 Hack teams
While the CoE model can attract impressive talent, some organizations might not be able to appreciate
advanced data science. If senior technical experts are hired into such an environment, they may never fully
be able to exercise their deep expertise, become frustrated, then seek opportunities elsewhere. Furthermore,
the CoE model lacks the nimbleness to respond to operational needs. A hack team is a less expensive variant
that is staffed with junior talent who are eager to learn. While the term “hack” is associated with the darker
side of technology, in this context, the term refers to exploratory programming—or experimenting to see the
possibilities with code and data.

Usually sponsored by an agency executive, the team excels at driving technical awareness: promote data
science and show what’s possible. For example, during the third term of the Bloomberg Administration in
New York, most data science teams were hack teams that sat in divisions of the executive branch (the
Mayor’s Office), supporting portfolio agencies through data analysis and predictive modeling. As the first

322 CHAPTER 16. BUILDING DATA TEAMS

wave of data teams in NYC government, much of their efforts was spent on introducing agencies to working
and thinking with data.

Hack teams are led by a manager who has strong soft skills. The manager can navigate politics and articulate
how data fits into policy issues, sell the promise of data science in a wide variety of problem spaces, and
maneuver the team to work on strategic projects. Figure 16.2 illustrates the operational flow in a hack team.
New project ideas originate from executives, who recommend issues for investigation by the team’s manager.
The manager triages the top priorities and assigns to hack team staff. In effect, the hack team is treated
as the executive’s personal team of “fixers”. Since junior-level data scientists are hungry to learn, they are
willing to take on any requests but will often bend the scope to suit their intellectual curiosities.

Figure 16.2: Hack Teams. Project ideas originate from the issues that a senior executive must address. The
executive filters issues and only passes top priority issues to the team manager, who triages and assigns tasks
to staff.

Pros. By hiring junior talent, staff will naturally need time to grow and mature as data professionals. Typi-
cally, junior staff tend to gravitate to the most technically advanced techniques without fully understanding
how they work. Meanwhile, stakeholders will demand intuitive explanations rather than technical wizardry.
This push and pull relationship forces both stakeholders and junior staff to grow together. Hack organizations
are great career launching pads for junior staff and can be a source of emerging leadership talent.

Cons. Government executives may treat a hack team as “parachute squad”—they focus on short-term
problems, then move onto the next problem. Data team managers will be pressured by executives to cover
a sprawling portfolio without acknowledging that quality solutions need time to execute. Eager junior staff
are then dropped into large scale problem spaces and are given significant latitude to develop a solution, but
then must move onto the next priority in short order. In many cases, these teams are in constant “firefighting
mode” rather than proactively working toward a sustainable policy solution.

While more economical, the focus on junior talent also comes with growing pains. As junior data scientists
undertake their first real-world projects, they can make avoidable technical mistakes that lead to poor
decisions. Furthermore, these teams tend to be more analysis focused and face challenges when the task
requires the development of maintainable, scalable software. To guide the team’s development, we recommend

16.2. OPERATING MODELS 323

hiring an expert, more senior data scientist to provide technical mentorship.

In short, Hack Teams are a great structure to introduce agencies to data science, but can fall short on
technical sophistication and lasting change.

16.2.3 Consultancy
An internal consultancy consolidates technical talent into a central office that triages data-related requests
from stakeholder offices. Perhaps the simplest consultancy is request-based: Each request is triaged by the
team manager who then assigns the best-qualified team member to liaise with the internal client, propose
a path forward, then execute. Under this model, data scientists and engineers will float from one project to
the next. (see Figure 16.3).

Figure 16.3: Consultancy model. Individual stakeholders submit requests to the data science manager, who
triages and assigns the task to the most qualified data scientist.

Pros. Data scientists who like to have an ever-changing variety of projects tend to enjoy working for consul-
tancies. Not only can the subject matter change, but working with different types of stakeholders teaches data
scientists to be diplomatic and adapt to their surroundings. Consultancies are attractive for their economies
of scale as multiple stakeholders can pool resources and have access to a centralized service. Furthermore,
consultancy models do not burden data scientists with the politics within the stakeholder’s organization—the
objective is to deliver upon request.

Cons. There are organizational challenges that arise when operating a consultancy. If established in a
demanding environment, the consulting team is beholden to multiple stakeholders rather than just one,
raising questions about if all offices have equitable access. Because stakeholders can submit requests at will,
the data science team can be inundated with a large number of requests. And as requests mount, data
scientists will be pushed toward quick ad hoc deliveries and disincentivized from long-term research and
development. For this reason, projects will tend to be short-form analyses rather than larger scale software
development. Managers will need to triage and load balance requests so that data scientists can maintain
their work tempo while fairly addressing the needs of stakeholders.

In high demand environments, managers may need to “break the thread”—a situation where different data
scientists are assigned to a project at different phases. Context and institutional knowledge can be lost along

324 CHAPTER 16. BUILDING DATA TEAMS

the way. Alternatively, a consultancy established in a low demand environment will likely spend significant
time with lead generation and business development in order to onboard new projects.

In short, consulting models give power to offices that can afford research services, but teams will prioritize
short and quick turnaround projects.

Pro Tip. The funding mechanism for a consultancy has a direct impact on time spent on administration and
accounting requirements. If the team is fortunate, a single office will provide “base funding” to operate the
office. Where funding is not fully available, agency executives can levy an internal tax of stakeholder offices to
fund the consultancy; however, not all offices will be supportive of such a funding arrangement. Alternatively,
a consultancy can raise money through a “fee for service” scheme that gives interested stakeholders access
to data services. For this to be financial viable, the demand for services needs to cover costs, requiring
managers to account for time spent on every request and increasing management overhead. While this can
be burdensome, it sometimes is the only politically and financially viable option.

In order to balance the budget, managers are forced to balance the demand for services and the operating
costs. The demand equates to revenue that covers the teams’ costs. If demand follows an even-keeled pace,
then the team’s costs can be managed with ease. In contrast, irregular demand (e.g., many small projects,
large breaks between projects) has implications for the team’s financial solvency. Thus, managers should opt
to build a constant stream of billables by advocateing for retainer funding—a regularly occurring fee that
allows stakeholders to use services when required.

When consultancies rely on billables to fund their operations, then managers need to be aware of the billable
rate and the utilization target. The hourly billable rate is the “fully loaded” cost of employing a staff member,
including variable and fixed costs (e.g., total annual cost of salary, overhead, management, infrastructure,
etc.).4 The billable rate is expressed as

r = Salary + Fringe + Overhead
Work Hours per Year × Target Utilization Rate

The financial benefit of operating an internal consultancy is the lower financial cost relative to private
consultants. If r is too high relative to private alternatives, then agency stakeholders could seek external
help. Thus, the manager should control r by adjusting the utilization rate and the employment costs. If the
demand for services is low, the utilization rate will also be low, which translates to a higher hourly billable
rate to account for costs. To ensure that the team delivers economies to the agency, the staff salary cost
would need to be lower and, in turn, less competitive with the data science market. While consultancies
sound good, they are quite a challenge to operate in government settings.

16.2.4 Matrix organizations
While an individual data scientist can build a data product on her own, bringing her work to life requires
social and technical infrastructure. If the product is a new algorithm intended to be used on-demand, then the
data scientist will have to rely on a data engineering team to build data pipelines to feed the algorithm and
a software engineering team to productionize the service. In addition, stakeholders will need to be convinced
that the data product is worth their time. Indeed, launching a product is a feat of coordination. Matrix
organizations can solve some of these coordination and inter-office challenges.

As shown in Figure 16.4, matrix organizations lower barriers, doing so by allowing each team member to
occupy a dual role:

• Each data scientist is embedded in a project team along with members of other offices. The project
team has a defined mission and focus area with a project lead who guides the team’s activities. These
cross-functional teams are a cohesive unit that have their own mission independent from the data
organization.

4In private sector, r is multiplied by a target profit margin, which is inappropriate for an internal consultancy.

16.2. OPERATING MODELS 325

• Since cross-functional teams lack a deep bench of similar talent, data scientists may feel alone and
unsupported. To balance, data scientists are managed by a central data science organization. This
allows data scientists to have a “home base” of like-minded technical experts who can support their
growth.

Figure 16.4: Matrix organizations: All staff are assigned to a project team. The direction of projects is set
by the project lead, but data scientists are managed by the data science department.

Pros. A matrix model removes the “us versus them” barrier: data scientists can integrate with other orga-
nizations and stakeholders can feel they are working with their “own” people. This arrangement also works
well for other data professionals such as data engineers and data analysts. The cross-functional structure
removes bureaucracy and gives individual teams the authority to make decisions specific to their mission
and have dedicated resources to move the project forward.

Cons. The centralized data science organization will take on a technical support role rather than serve as
the driver of change. Instead, the project lead and the lead’s home office will drive the direction of project
endeavors. Since data science managers do not have control over project work, they have less visibility into
the day-to-day due to the working arrangement. Thus, managers will spend far more time to sync with staff
and keep track of developments.

On the staff level, there are occasionally communication challenges in cross-functional settings. Each role in
a cross-functional team is trained in a different way of working. Thus, data scientists will operate differently
than software engineers and policy advisors. Each data scientist must become their own communication
strategist to convey what their discipline can offer and how they fit in. Some will excel while others will shy
away from this responsibility. In the worst case, project teams might not understand how to utilize a data
scientist and the skills are not adequately employed in the team’s work.

Pro Tip. Matrix organizations give much less authority to the data science manager. The manager will find
the role especially challenging if her interests lie in setting policy. Instead, consider hiring someone who will
be satisfied with empowering a team through technical mentorship. Matrix organizations also give hiring
managers the chance to use the project team’s mission as a unique selling point—some missions are more
attractive and serve as intellectual compensation for ambitious talent.

In short, matrix organizations reduce friction between departments and allocate adequate resources to mobilize

326 CHAPTER 16. BUILDING DATA TEAMS

projects. Data scientists fit in this model only when project teams understand how to make use of their craft.

16.3 Identifying roles
If we search the internet for data science roles, we will likely find that many postings have the same job
title but different responsibilities. These differences reflect the specific needs of each organization. Some
organizations will focus more on delivering insights while others build intelligent systems. Thus, there is not
just one single archetype of a data professional, but rather a range. In this section, we provide one perspective
of the types of roles that government data science teams employ and provide a brief introduction to hiring
in the civil service system.

16.3.1 The manager
The manager sets the vision for the team and prioritizes projects. Titles include “Data Science Manager”,
“Director of Data Science”, “Head of Data Science”, “Director of Data Analytics”, among others. Perhaps
more importantly, the manager is an enabler who opens doors so the team can explore possibilities throughout
the agency and build technical capacity. This is not to say the manager sets the team loose—sometimes it
will be necessary to nudge the team toward organizational priorities. Often times, the manager has strong
communication skills, in both meetings and in front of audiences. In early stage data science teams, the
manager tends not to be technical, but rather someone who has the trust of executive leadership and serves
as a guide into new territory. As the team evolves and the organization becomes more comfortable with data
science, managers may be sourced from more technical backgrounds to help steer the team toward more
sophisticated use cases.

Pro tip: We advocate for hiring managers who come from technical backgrounds to set a data-driven culture
from the very start. However, if hiring a first-time manager, be prepared for a transition. In other words,
be patient. Manager roles are focused on empowering staff, but the new manager may still want to spend
significant time on research and code. While this is a common pattern, it needs to be carefully managed.
A manager who focuses too much time on the technical aspects will inadvertently foster an environment
of “competition” with their direct reports—this has adverse consequences for team morale. The transition
needs constant coaching. The conversion is worth the effort, not only for the agency, but for the broader
data science field.

16.3.2 Analytics roles
Within agencies that are making their first foray into data, newly established data teams are often tasked
with conducting analyses. These teams tend to be staffed with data analysts and statisticians:

Data Analysts conduct descriptive analyses. Their charge is to craft a narrative from what they can see
from the data. Data analysts are skilled with transforming data to find answers. For example, data analyst
could be asked questions such as

• What is the fire department’s response time trend over the last few weeks?
• Are service requests resolved within 30 days of receipt?
• How many people in county X stayed at a shelter in the last 48 hours?
• How often has economic growth exceeded Y% in a quarter?
• Which are the greatest correlates of variable Z?

While these questions are simple, they are valuable inputs that inform stakeholders’ initiatives. Some analysts
will gravitate towards Excel and SQL; however, large scale problems will require programming languages like
R or Python. In any case, data analysts form the first line of support for analytical requests.

Statisticians focus on making generalizable inferences from data.5 What sets statisticians apart from data

5In some organizations, statisticians also have data scientist titles. Computational statisticians are a special case that rely
on machine learning to draw inferences and have many overlapping skill with “full stack data scientists”.

16.3. IDENTIFYING ROLES 327

analysts is their deep understanding of probability and statistics. As full population datasets are expensive
and rare, statisticians can determine whether inferences from a sample can be generalized to a target popu-
lation. In addition, statisticians are skilled with using statistical models (e.g., linear regression) to estimate
relationships between variables and decompose influences (e.g., coefficient βk). By estimating the contribu-
tory effects on an outcome, agencies given a view into the inner workings of phenomena that would otherwise
not be possible from descriptive analyses.

For example, statisticians could answer questions such as

• Is candidate A ahead of candidate B in the polls?
• What is the effect of policy A on population X?
• How many more infections should we expect in the next 48 hours?
• Can these five surveys be re-weighted to infer societal attitudes toward issue Z?
• What are the topics covered in this corpus of speeches?

To accomplish these tasks, statisticians rely on programming languages like R, Python, and Matlab. Some
statisticians are trained in the quantitative social sciences using higher level languages such as Stata, SPSS,
and SAS.

Together, statisticians and data analysts form the backbone of inference-focused organizations. They can
conduct descriptive analyses and draw causal inferences.

16.3.3 Data product roles
In contrast to insights-oriented roles, product-oriented roles require a different skill set that not only rely on
statistics and probability, but also blends knowledge of software development, computational infrastructure,
and architecture. Because of the broad yet deep knowledge required to build functioning products, this type
of data science team tends to be expensive to operate. Here, we narrow our focus to two skill groups: data
scientists and data engineers.

Data Scientists have knowledge of data analysis, statistics, and engineering—generally with a stronger
command in some areas than others. Data scientists are expected to conduct analyses to understand the
data, then build models that feed intelligent services. They serve as a bridge between insight and use case.
In short, the role is a catch all.

Example tasks include:

• Develop an API (or even a list) that returns a list of the highest risk buildings in a local area.
• Prototype a prediction engine that nowcasts key KPIs.
• Flag all aircraft that are present in aerial imagery.
• Predict which businesses will need financial loans in the next six months.

The product-oriented toolkit is more expansive that insight-focused teams, including analysis languages
(e.g., R, Python, Julia), software development languages (e.g., Python, Java), a large-scale data processing
framework (e.g., Hadoop, Spark), a version control system (e.g., Git), and querying skills (e.g., SQL).

An emerging role in tech sector is the machine learning engineer (ML Engineer)—a position that bridges
data science with software engineering. Since data scientists often focus on prototyping an algorithm, they
may not be the most skilled with production duties. Most of the effort required to stand-up a production-
grade algorithm lies in developing the software and infrastructure that breathe life into the project, then
ensuring the algorithm continues to function as designed. ML engineers are responsible for this middle layer
that clearly demonstrates the value of a data product.

Data Engineers are keep the data flowing. If data is water, then data engineers build the pipelines to ensure
that everyone who needs water has access to it. The work of a data engineer centers of building software that
can ingest, transform, and store data so it can be used. In short, they maintain the data platform on which
all else depends. Part of the responsibility includes maintaining data infrastructure (e.g., servers, databases,
pipelines) and ensuring that data pipelines are continually running. Data engineers automate processing

328 CHAPTER 16. BUILDING DATA TEAMS

wherever possible to minimize manual work, then schedule the processing to meet operational schedules.
This specialized role create the conditions that make data science possible.

Example tasks include:

• Send API request to a data provider, ingest the returned data, then process and store it in a database.
• Develop a program to apply Optical Character Recognition algorithms to extract text from PDFs and

store as a dataset.
• Develop a real-time pipeline to transform the data for use in a dashboard.
• Set up data access controls for each column of a highly sensitive dataset.
• Devise a pseudo-anonymization procedure to conceal personally identifiable information in a widely

accessed dataset.

Data engineering teams rely on many of the same tools as data scientists, but apply them in different ways.
While the specific programming languages vary from one organization to the other, they typically involve a
software development languages (e.g., Python, Java), a large scale data processing framework (e.g., Hadoop,
Spark), a scheduling framework (e.g., Airflow, AWS Glue, Luigi), a version control system (e.g., Git), and
querying skills (e.g., SQL), among others. Indeed, the skill set is much wider and more complex.

While data engineers are common in tech companies, the role is less common in government. Instead, data
engineering tasks tend to be spread across a number of roles in an IT department, such as involving a database
administrator to manage the data processing and make available database views (i.e., custom queries) to
data users. In small teams, there may not be a difference between data scientist and data engineer roles,
requiring all team members to undertake data engineering tasks themselves.

16.3.4 Titles in the civil service system
Chances are that data science roles are not currently defined in government civil service systems. Instead,
they are often times classified as an IT analyst role, which has pre-defined salary ranges that might not match
market expectations for data scientists. As a manager, being aware of these limitations is important so that
you can plan your team structure accordingly. But fear not—the civil service system is not a monolith. Every
government agency and jurisdiction has different ways of interpreting civil service law, which will at times
give afford more flexibility to how one hires data scientists.

For example, during the Bloomberg Administration in New York City, for example, some data analysts were
hired into “Staff Analyst” roles while some data scientists were hired into “Administrative Staff Analyst”
roles. Both roles share similar responsibilities as other non-technical roles such as program and project
managers. In addition, civil service titles often do not reflect what the data scientist does, but serve as
the vocabulary that describe how someone is hired and paid. While it is not expected that every hiring
manager will understand civil service nuances, having some familiarity of what is possible in your agency
will smoothen the hiring process and identify strategies to easily onboard talent.

16.4 The hiring process
Hiring a data scientist in government is similar to the private sector. There are some practices that can help
streamline the hiring process and converge on suitable candidates more quickly. In this section, we provide
a few tips on setting up the hiring process and typical steps in an interview process.

16.4.1 Job postings and application review
The hiring process starts with drafting a position description that details responsibilities and meeting with
recruiters to align on expectations.

16.4. THE HIRING PROCESS 329

The position description (PD) should describe the vision for a data role, what is exciting about the team’s
mission, the growth opportunities, and the skill requirements. As HR recruiters will need to map the position
to civil service requirements, it is also worth conducting some background research on suitable civil service
title, salary grade, and permanence.

The civil service cannot hire for job titles that are not in the system, thus recruiters may need to change
the title to match government standards. Some recruiters will opt to rename a role to match a current civil
service title. For example, a “data scientist” role might be hired as a 2210 in the US Government and be
relabeled as “Information Technology Management Specialist”—a title that does not easily translate into
everyday vernacular. Instead, we recommend co-locating an “office title” with a more subtle civil service
title. For example, “Data Scientist (Job Series 2210).”6

In some agencies, recruiters are involved in the initial application screenings, relying on a scoring rubric
to help identify qualified candidates. The technical nuances, however, might not be apparent—sometimes
what differentiates a data scientist from a frontend web developer is not clear. To set expectations and tone,
consider introducing recruiters to your team’s work by walking through a typical day’s work, hot topics in
the field, and how roles differ. It can also be helpful to provide keywords and verbiage that signal the right
qualities.

16.4.2 Interviews
Data scientists should be assessed on whether they have the skills to deliver on technically demanding tasks,
but also if they exhibit the emotional intelligence and the business acumen to work well with others. The
precise mix between these two qualities depends on the role, though being trustworthy and personable makes
for good work environments. Thus, interviews involve at least two steps: a fit screening and a tech test.

Fit screening. This initial interview focuses on whether the candidate would fit within the culture of the
team. Since the culture of every team is different, there are no absolutely correct answers, but the fit should
match those teammates, stakeholders, and managers. This screening also presents the opportunity to check
if candidates have had meaningful data science experiences, such as their role on past projects, how do they
like to work (e.g., teams, solo), how do they respond to challenging situations.

To calibrate expectations within the team, we recommend that at least two team members (or one team
member and one stakeholder) conduct a few screenings together. In a separate session, the interviewers
should discuss their impressions of the candidates with one another. This process will not only expose
personal preferences but calibrate perspectives.

Tech test. The objective of the technical screening is to determine if the candidate has the right qualities
to contribute to the team. While the subject matter of a tech test varies from role to role, the test can be
administered in two formats: a whiteboard assessment and take home test.

Whiteboard assessments are conducted in-person and can be intimidating for the candidate. This format
evaluates how the candidate performs when faced with a time-constrained problem and provides up-close
data points on their thinking process. The interviewer asks technical questions to the candidate who will
then walk through the logic and solution a whiteboard. For example,

• What is the definition of R2? How would you explain it to a non-technical person?
• In coding language X, write a function that calculates a Fibonacci sequence returning the first k values?.
• Given a non-linear relationship illustrated on a whiteboard, describe three ways to fit a model to the

pattern.

For a list of questions, see Appendix B. While whiteboard tests force an answer, they can unnecessarily
penalize candidates for wrong answers, especially if the questions are too specific. A data scientist who is
interviewing for a computer vision role, for example, may not understand the mechanics of time series models.
Asking questions that show their thinking process is a better gage although identifying these questions is
challenging.

6Note that these examples are specific to the United States. The experience in other countries may vary.

330 CHAPTER 16. BUILDING DATA TEAMS

Take home tests simulate a simple technical project that the candidate could encounter while on the job.
At an agreed time, the interviewer will send a set of tasks and materials to the candidate to complete
with a deadline. The candidate submits code, documentation, and outputs for the data team to review.
The objective is to evaluate the quality and thoroughness of the work product and determine if it meets a
reasonable standard. The specific set of tasks depends on the nature of the role. For example,

• A policy and strategy team may ask the candidate to analyze a CSV of data to answer questions, then
write a short presentation and give a short five-minute talk to non-technical stakeholders.

• A transportation infrastructure team that specializes in risk management could provide data about
roadway inspections and ask the candidate to predict which bridge (in an unlabeled test set) is likely
to have faults and why.

• A clinical research team looking to work on quasi-experimental techniques could ask a candidate to
perform a Regression Discontinuity Design on a dataset and write a short research brief.

Take home tests have encountered some controversy in recent years (McEwen 2018). In fact, some tech
companies have allegedly abused tech tests as a source of free labor—an ethical violation of the interview
process. To avoid this perception, we recommend that the tech test is administered according to the following
guidelines:

• Under no circumstances should tests be drawn from current or future projects.
• If possible, current staff should take the test themselves to see if it is feasible and reasonable.
• The test should not take more than two to three hours.
• Be clear how the tech test was constructed and why it is relevant to the interview process.

At the end of the test, staff should review the test results, then schedule a short follow-up discussion with
the candidate to ask questions and give feedback.

Post-Interview. At the end of the interview process, the top candidate will be extended a preliminary
offer. In the public sector, the “preliminary” status is necessary as civil service jobs are positions of public
trust, requiring candidates to successfully pass background and reference checks. If the candidate accepts,
then all other candidates should receive feedback. We recommend, however, that other candidates be kept
on reserve in case the top candidate withdraws. As governmental hiring processes are lengthy and the data
science market is competitive, this unfortunate scenario does happen from time to time. From start to end,
hiring a data role can last between three months to five months. Indeed, governmental hiring processes are
a weakness that needs to be addressed in order to compete with the private sector for talent.

16.5 Final thoughts
Building a well-functioning data team is a marvelous adventure for any government agency. A well-designed
data team can serve as a source of innovation and inspiration. While one can model their team after what has
been described in this textbook or any magazine article about management strategy, there is no substitute
for being present and thoughtfully engaging people to evolve public service. For anyone aspiring to build a
data science team, remember that humans are social creatures. The technical splendors are tools that can
enable wonderous use cases. However, building trusted relationships with stakeholders must always come
first for trust is the substance that propels data science in public policy.

Appendix A: Planning a Data
Product

Developing a prototype of a prediction model is the easiest part of developing a data product. And in a world
where rapid development is prized, we can take comfort in this fact. There are many challenges, however. For
one, data scientists must have a clear understanding of how the product fits into a policy process and be able
to articulate its value. Without this, the product runs the risk of being “a flash in the pan”. Furthermore,
products must be functional and continue to function for the duration of its useful life, requiring some
thought on how to maintain and evolve it as circumstances change. The world, after all, is a chaotic place
with unexpected paradigm shifts happening all the time. For these reasons, data products should have a
Concept of Product Operations Plan (CPOP)—a document that clearly outlines how the data product will
function and all operating considerations.

In many cases, data teams will have a verbal understanding of how products will function. A CPOP can
be a helpful tool to formalize processes, identify gaps and risks, and communicate with stakeholders on a
product’s direction. The questions in the following section can inform the plan, touching upon many of the
key issues that should be considered.

If the objective is to deploy a data product that is a web service or decision making engine, then there
are likely stakeholders who will need to be briefed. Presenting the CPOP communicates key elements of
governance and lends confidence to the initiative.

Key Questions
Motivation. We begin by defining the main motivation for building the data product and articulate why it
merits the attention of stakeholders. Furthermore, we identify where does the data product sit in a process,
including the users and intended actions:

• Motivation: Why was the data product created and what problem does it solve?
• Theory of change: How will the data product be used to affect change? (i.e., Is there a clear avenue

for success? Does the product prompt a decision such as target something for investigation, or does it
serve as contextual information such as an ad hoc report?)

Decisions. Data products produce some set of outputs; However, effective data products have a clear
purpose with identified decision points that lead to well-defined actions.

• Decision point: Is there a clear decision point at which the algorithm will sit? (i.e., Does the data
product influence a current or new decision point? If it is not tied to a clear decision point, why build
it?)

• User : Who will receive the product’s outputs? (i.e., Will the product be received by a human to
inform decisions? Or will it trigger a software program to carry out standardized actions like online
recommendations or alerts?)

• Form factor : What form will the outputs be delivered? (e.g., API, dashboard, graph, etc.)
• Intended action: When the user is presented with outputs, what actions will be taken?

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2

331

https://doi.org/10.1007/978-3-030-71352-2

332 Appendix A: Planning a Data 1 Product

• Impacts: Who will be the recipient of these actions? Should the actions and decision process be made
explicit to the recipient? (i.e., If a computer is passing judgment on another human, is this fair?)

• Cadence: How often does the decision need to be made? Can the algorithm and infrastructure meet
that cadence and frequency? (i.e., Beyond the prototype stage, can the data product be continually
used to meet regular operational needs? If not, perhaps it is not a sound concept to implement.)

• Pipeline: Can the data be delivered reliably given the operational cadence? What are the consequences
of delays in delivery? (i.e., If the product goes offline, what processes will be handicapped? Is there a
backup process?)

• Harm: What is the harm that may be potentially done?
Sample Design and Data Quality. Just having any data is not enough to make a data product. The
input data must have good qualities that lend themselves to the use case while some qualities are detractors
that need to be carefully considered and managed.

• Fit for purpose: How was the data collected and is it appropriate for the intended use case? (e.g., If
the data are collected for a research survey, does it hold operational value? If the data is collected on
one population, does it generalize onto another?)

• Data collection protocols: What were the data collection protocols?

• Coverage: Does the data have sufficient detail about all strata that will be impacted? If not, which
subpopulations would this model be applicable? (e.g., If data is about income but contains mostly
affluent populations, can it be applied to less affluent populations?)

• Biases: What biases can appear in this dataset? Were biases actively controlled during data collection?
(e.g., historical or echo chamber biases, measurement bias, attitude bias, etc.)

• Adjustments: Can biases be adjusted? If not, is this data product safe to use?
• Missing data: How are missing values treated? Could imputations or deletions adversely affect the

data’s characteristics and introduce artifacts to the model? (i.e., If the data has missing values, how do
you plan to treat them? If missing values were imputed by the data producer, are those imputations
valid?)

Error Evaluation. All quantitative models have errors—the question is how much of each kind. Is it more
acceptable to falsely predict something will happen or allow an event to go undetected?

• Type I Errors: What are the social and economic costs of a Type I error? (i.e., What if the product
mistakenly labels an instance such as a person as a false positive?) = Type II Errors: What are the
social and economic costs of a Type II error? (i.e., What if the product mistakenly labels an instance
such as a person as a false negative? What are the costs of being “blind-sided”?)

• Disparity in errors: Do errors affect some substrata more than others? (i.e., Is the level of accuracy
consistent across demographic groups or subpopulations? What does this mean for reliability when
passing judgment if there are disparities in accuracy?)

• Acceptable risk: How much error is acceptable? What is the cost of not deploying the product?

Transparency and Perception. Products need to be acceptable and adopted by the policy process, thus
being able to sell the idea and anticipate perceived risks will go a long way to socialize the product and
garner support.

• Transparency: Which stakeholders should understand the algorithms inner workings? (i.e., Who need
to lend support to the initiative and stand by it)

• Elevator pitch: How will this model’s inner workings be communicated in three sentences or less?
(i.e., How can one quickly attract the attention and support of a senior officer?)

• Technical review: Is the statistical and algorithmic logic clear and well-documented for experts to review
if needed? (i.e., Was the effort developed following a clear methodology or was it hacked together? Will
this project stand up to scrutiny?)

• Explanation: Is it possible to explain how the data product arrived at a specific prediction? (i.e., If the
product produces a prediction, can a user see which specific factors influenced the result)

• Optics: Can the product be viewed negatively? If so, what is the source and can it be mitigated?
(i.e., can the project be misconstrued or is it already built on dubious grounds)

Appendix A: Planning a Data 1 Product 333

• Moral hazards: Are there unfair or perverse incentives for deploying the data product? (e.g., Is the
producer of the product unfairly profiting from the use of the product at the expense of another
party?)

Thinking about Automation. Automating some processes will shift some responsibility and power to a
machine rather than a human. If the product aims to automatically make decisions, then the downstream
consequences should also be explored.

• In the Loop: If a process is automated using a data product, how do humans retain control over the
process and guide how algorithms evolve?

• Need for automation: If the algorithm replaces a human, what responsibilities will displace humans
have?

• Automation failure: If the data product goes offline unexpectedly, what needs to be done until services
come back online?

• Responsibility: If automation is the goal, is the organization hosting the product willing to assume the
liabilities of biases and error? (i.e., If the algorithm is found to be harmful, will the organization be
ready to own the liability.)

• Model Drift: Which metrics need to be reviewed on an ongoing basis to ensure the data product is
behaving as expected? What are the normal levels of performance?

Privacy and Security. Many data products require sensitive data to give them their edge. Safeguarding
the data thus becomes a priority to maintain trust and safety of those who are affected by the products.

• Security: What measures and practices will be taken to minimize unnecessary data exposure? (e.g., pass-
word protection, access permissions, access logging)

• Identifiable information: Is there identifiable information being used? (e.g., social security identifier,
phone number, name, e-mail address)

• Anonymization: If so, can data be anonymized or withheld without substantially reducing functionality?
(i.e., can each record be identified using a pseudo-identifier)

• Privacy: What are the consequences of a breach? (i.e., algorithm and data fall into the wrong hands)

Operations and Monitoring. Lastly, the product will be put into production. There will be performance
issues when the data product does not behave as intended. What will the data science team do to ensure
smooth continuity of operations?

• Incident reporting: If anyone identifies an error or issue, how will the issue be reported? (e.g., If data
processing is delayed, how will it be reported?)

• Incident announcement: Who will be informed of an ongoing issue? (e.g., users of the data product,
management and executives, engineering teams)

• Incident response: Who will be responsible for addressing the incident and under what timeline?
• Backstop: Under what conditions should the algorithm be shut off temporarily? What if permanently?

Appendix B: Interview Questions

Interviews are an opportunity for a candidates and employers to get to know one another and check if
there is a good fit. While it would be ideal to cover all aspects about a candidate’s experience and skills,
the conversation needs to be concise and target the most pertinent issues. In this appendix, we provide a
list of sample questions that employers can use to model their own questions, ranging from interpersonal
considerations to technical knowledge.

Getting to know the candidate
Like any other interview, get to know the candidate. Below are a few opening questions to help set the stage:

• Tell us about yourself.
• What interested you in this role?

Business acumen
The candidate might give a great first impression, but does he or she have the right demeanor and thinking
processes to work in a team in government? The following questions help expose a candidate’s business
acumen:

• What role does data science play in policy environments? (i.e., do you have a sense of what data science
can do for public sector?)

• What factors do you consider when prioritizing projects? (i.e., can you be trusted to figure out order
of operations?)

• How do you deal with failure? (i.e., what is your attitude toward hard situations?)
• Do you prefer to work in teams or individually?
• What does co-creation mean to you? (i.e., can you share decision making power?)

Project experience
Let’s dive into the candidate’s past technical experiences. An easy entry point is to ask:

Tell us about one of your past data science projects.

Then dig deeper into the details. Keep in mind that any detail that has been mentioned as part of the
past project is fair game for further conversation. Consider these follow up questions:

• What kind of user would benefit from the project? How did the project impact the user? (Note: This
will only apply to candidates with work experience. Recent graduates will likely recount a class project
or thesis.)

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2

335

https://doi.org/10.1007/978-3-030-71352-2

336 Appendix B: Interview Questions

• What techniques did you use? Why was it appropriate for the situation? What were the qualities of
the data that informed that decision?

• Describe the core assumptions of that technique.
• Which languages and software did you use?
• Where their limitations to the software that required custom code?
• What ethical implications did you consider before implementing the project?
• How would you summarize this project to a non-technical stakeholder?

Whiteboard questions
In tech organizations, a whiteboard test helps interviewers assess the candidate’s core knowledge and her
ability to think on her feet. Some require a whiteboard to write or draw a solution, while others use visuals
to prompt the question. For each of these questions, we provide some intuition for what they test and why
are they appropriate.

Statistics
Q1. Draw the shape of the income distribution of the United States (or any other country). Which is greater:
the mean or the median?

Why this question? Working with data requires the ability to understand how to treat different
shapes of data. A kernel density plot of income will likely have a peak to the left (closer toward
zero) and a long tail to the right. Mean is sensitive to outliers while median preserves the middle
point of the distribution – often the peak. Thus, the mean will be larger than the median.

Q2. What is the effect of a logarithm transformation on a continuous variable?

Why this question? Much of a data scientist’s job involves transforming data so it is usable. The
logarithm transformation, which compresses distributions reducing the skew in the data, is one
of the basic tools for improving the usefulness of a variable.

Q3. What are the consequences of multicollinearity in a linear regression? How would you detect it?

Why this question? As regression is one of the most basic modeling techniques, candidates should
have a thorough understanding of its assumptions. Multicollinearity is a condition in which two
or more variables are highly correlated, which can be diagnosed using a variance inflation factor
(VIF). If left unchecked, a coefficients can exhibit large, unusual values due to small changes in
a model.

Q4. The COVID-19 outbreak forced all countries to develop testing programs to track the spread of the
virus. If a country reports “newly confirmed cases”, what is possible to infer from this data? What is not
possible to infer?

Why this question? A core problem with COVID-19 statistics is their generalizability. Some
countries are able to conduct small random samples to understand full population spread while
most reports reflect the number of people who have requested testing (self-selection). Thus, new
cases largely reflect self-selected testing and underestimate the true number of infections. The
candidate should be able to distinguish between self-selected and random samples.

Q5. Can internet polls (e.g., Facebook poll, Twitter poll) be generalized to a population?

Follow up. How can polls be adjusted to approximate the views of a population?

Appendix B: Interview Questions 337

Why this question? Similar to the COVID-19 question, internet polls also tend to be self-selected.
Although self-selected data is more abundant, it will often be biased due to self-selection and
coverage.

Causal inference
Q1. Explain why control and treatment groups are necessary in experiments and quasi-experiments.

Follow up. How does one know if a control group is appropriate? What are three conditions that
must be observed in order to prove a causal relationship?

Why this question? This question assesses basic knowledge of ignorability (i.e., control group is
indistinguishable from the treatment group) and how to test for statistical differences. It is an
opportunity for someone who understands the Potential Outcomes Framework to describe the
basic tenets of causal inference.

Q2. Suppose you would like to test whether housing subsidies improve health and social outcomes. How
would you set up an experiment?

Follow up. How might assignment contamination and sample attrition affect the experiment?
If you did not have funding for a randomized control trial, what are some quasi-experimental
approaches that could be applied?

Why this question? By framing causal inference in a real world situation, we can assess a candi-
date’s creativity and awareness of experimental design principles.

Estimation versus prediction
Draw one of the reference graphs in Figure B.1, then ask the following questions.

Q1. Suppose some of your policy analysis stakeholders would like to understand the relationship between x
and y. What sort of model would you use and why?

Why this question? Policy environments place most emphasis on interpretability and linear models
are the de facto choice. This question checks if the candidate understands which models lend
themselves to estimation of relationships.

Q2. Suppose you would like to build a linear model to fit this graph. What would your model specification
look like? What are the limitations of your specification?

Why this question? The goal is to check if the candidate understands estimation strategies and
their tradeoffs for polynomial expansions, discretizing the x value to approximate the shape,
intercept changes, etc.

Q3. If you were to apply a pruned CART model, draw one predicted line. Explain how the algorithm works
and if it is suitable for interpretation.

Why this question? CART and linear methods have different assumptions and outputs. CART
models produce jagged or blocky predictions that rely on attribute tests. For continuous problems,
CART produces fairly crude approximations.

Q4. Explain the concept of bagging and how it can improve this fit.

Why this question? CART can be improved through bootstrap aggregation and further improved
with the random subspace method (e.g., Random Forest).

338 Appendix B: Interview Questions

0

50

100

150

200

−5.0 −2.5 0.0 2.5 5.0
x

y
Option 1

−2000

−1000

0

1000

2000

3000

−5.0 −2.5 0.0 2.5 5.0
x

y

Option 2

−1000

0

1000

2000

−5.0 −2.5 0.0 2.5 5.0
x

y

Option 3

Figure B.1: Example reference graphs for modeling question.

Machine learning
Q1. What makes LASSO and Ridge Regression different from a typical linear regression?

Why this question? Regularized regression relies on penalization of the cost function. For teams
that work with high dimensional datasets, regularized regression will be a must.

Q2. What is a hyperparameter? Give an example of a hyperparameter and its relevance.

Why this question? Hyperparameters are a central part of tuning and optimizing machine learning
models. Candidates who work with machine learning should know the importance of hyperpa-
rameters and their role in model performance. A few examples include the number of variables
in Random Forest, the k in k-Nearest Neighbors, the λ parameter in LASSO regression, etc.

Q3. What is an attribute test in tree-based learning?

Follow up. What is an example of an attribute test?

Why this question? This question can screen for candidates who are concerned with the mechanics
of algorithms. The attribute test (e.g., information gain, entropy, Gini gain) is the foundation
on which tree-based models are built. Any data scientist who has used CART, Random Forests,
Gradient Boosting and any other tree model should be familiar with attribute tests.

Q4. What are the steps in a X-algorithm? Provide a step-by-step recipe.

Why this question? If a team has preferred techniques (e.g., neural networks, tree-based learning,
etc.), it can be helpful to find candidates who are also familiar with those core methods. This
question can be answered with a bullet point answer or a flow diagram that details each step.

Q5. Suppose you are given a n × m matrix of topic probabilities from a Structural Topic Model. How would
you index all documents to one another?

Why this question? A common problem with machine learning projects is to making the outputs
useful to an end user. This question asks how to use topic probabilities. One strategy could
involve transposing the probability matrix so that documents (n) are positioned as columns, then
compute a cosine similarity between each document. The most relevant documents for document
d could be identified by sorting cosine similarities in descending order.

Appendix B: Interview Questions 339

Model evaluation
Q1. Let’s suppose we have a classifier that has a False Positive Rate that is two times higher than the False
Negative Rate. What are your thoughts on this model and its fitness for applied use?

Why this question? This question checks if the candidate understands that False Positives and
False Negatives each have different costs in different contexts. There is no right or wrong answer;
However, the candidate should point out that the model’s fitness depends on context. For example,
in the criminal justice system, is it better to have a model that tends to falsely accuse someone
or erroneously drop charges? The candidate should reason through these social costs.

Q2. A team member estimated the following specification and developed policy recommendations from the
specification Income = f(Y earsofEducation). A number of policy analysts would like to apply the model
as a “tool” for income-related policies. What are your thoughts on this?

Why this question? While estimation and data storytelling are typical tasks in policy environ-
ments, the bias-variance tradeoff is not typically discussed in public policy schools. This questions
helps assess if the candidate sees the potential for the model to be underfit and prone to bias.
Thus, the candidate should be able to discuss bias-variance tradeoff and the difference between
estimation and prediction.

Q3. Given a table of a binary target and predicted probabilities from a classification model (Table B.1), plot
the Receiving Operating Characteristic (ROC) Curve. Explain what do the axes indicate.

Why this question? Many data scientists use functions without understanding how the underlying
machinery works. This question tests whether the candidate has the technical knowledge to
produce simple ROC curve without software, requiring knowledge of sensitivity and specificity.
Consider using this questions for senior technical roles that have mentorship responsibilities.

Table B.1: Table of binary targets and predicted probabilities.

Target Probability
1 0.9
1 0.7
1 0.4
1 0.3
0 0.4
0 0.2
0 0.1

Communication and visualization
Q1. What is the definition of R2? How would you explain it to a non-technical person?

Why this question? Explaining regression models will be inevitable task for a data scientist
working in policy. Being able to articulate the amount of variability explained is a good indicator
if the candidate will be able to liaise with and convince non-technical stakeholders of data science
project outputs.

Q2. What is hypothesis testing and why does it matter? How would you explain it to a non-technical person?

Why this question? Non-technical stakeholders will often interpret shifts in indicators as a policy

340 Appendix B: Interview Questions

effect without considering statistical significance. There will invariably come a moment when
hypothesis testing becomes a central point in debunking faulty assumptions. Similar to the pre-
vious question, assesses core explanatory skills.

Q3. How would you explain cross validation? When would you apply it?

Why this question? Many quantitative practitioners who are trained in the social sciences will not
be able to articulate the difference between estimation and prediction. In fact, cross validation
does not come naturally. This question can screen for those who can work beyond estimation
tasks and switch into a prediction mindset.

Q4. How would you improve the graph in Figure B.2? The intended outlet is a policy brief.

Why this question? There will always be poorly designed graphs, yet they are one of the principal
modes of communicating with stakeholders. This question focuses on the candidate’s attention
to detail and clarity of communication. The candidate should ideally identify (1) lack of title, (2)
lack of axes, (3) overly dark background, (4) overcrowding of points, (5) lack of a clear takeaway.

Programming
Q1. Given the following string (e.g., “The average household income was $59,039 in the year 2016.”), write
a pair of regular expressions that extracts each dollar amount and the year.

Why this question? For organizations that work with raw, messy data, data scientists will spend a
significant time using regular expressions. Keep in mind, however, that not all qualified candidates
will have a command of regular expressions.

Q2. Write and document a function that calculates a Fibonacci sequence returning the first k values? As a
hint, a sample Fibonacci sequence is as follows: 0, 1, 1, 2, 3, 5, 8, 13, ...

−1500

−1000

−500

0

500

−5.0 −2.5 0.0 2.5 5.0

Figure B.2: Example of a poorly designed graph as a point of reference for the visualization question.

Why this question? For teams that need strong programmers, it becomes more important to
have clean, functional code. This simple test checks to see programming ability and hygiene. In
particular, check if the code returns the requested result, clearly defines the input parameters,
and includes documentation. Allot 10 to 15 minutes for this question.

Q3. Write a function to calculate a cosine similarity matrix between two vectors, A and B. Cosine similarity
is given as

Appendix B: Interview Questions 341

cos(θ) = A · B

‖A‖ ‖B‖

Why this question? Translating mathematical concepts into code is a useful skill when working
adopting new techniques from research articles.

Take-home questions
Take-home tests check if a candidate has a command over key technical skills. Typically, the interviewer
will prepare instructions, tasks, and data. The candidate is provided a package of test materials and given
a time limit to undertake the test. We recommend choosing a representative task that the candidate would
be expected to perform while on the job, but ensure it is either a mock task or an already completed task.
In this section, we provide a set of high-level ideas.1

The main focus is to assess the quality and thoughtfulness of the answers and delivery. A code review should
also be conducted to assess programming hygiene and accuracy. Example ideas:

• A team that focuses on data preparation can provide a dataset of a few thousand sentences of text.
The candidate can be asked to extract all dollar amounts, linking each to the sentence from which it
was extracted.

• A team focused on politics can prepare a corpus of news articles and ask the candidate to cluster
articles, assign a “topic” label (e.g., topic modeling), and write a paragraph about the central themes.

• A clinical research team looking to build capacity in quasi-experimental techniques could provide a
dataset and documentation about its context. The candidate can be asked to perform a Regression
Discontinuity Design (RDD) at a pre-defined threshold. The output would be a short research brief
detailing whether a discontinuity exists, which robustness checks were considered, and the implications.

• A team that regularly develops visualization tools can provide hundreds of time series. The candidate
needs to develop an interactive dashboard that allows a user to toggle between time series (e.g., a
flexdashboard).

• A policy and strategy team can ask a candidate to analyze a CSV of data to answer questions requir-
ing the use of simple cross tabulations and regression models. The output would be in a form of a
presentation along with a short five-minute talk to non-technical stakeholders.

• For a social services agency, provide the candidate with public micro data (e.g., US Census American
Community Survey, Eurostat Labour Force Survey) and ask for a recommended set of population
segments that reflect distinct economic experiences in the labor market.

• A transportation infrastructure team that specializes in risk management could provide data about
roadway inspections and ask the candidate to predict which bridge (in a test set) is likely to have faults
and why.

• For a security-focused agency, provide the candidate with multiple time series of server request volumes.
The candidate is asked to identify and justify periods when unusual activity likely occurred.

• A GIS-oriented criminology team may need to quickly identify crime hot spots and provides a dataset
containing latitude, longitude, and date of crime along with a shapefile of local districts. The candidate
is asked to identify dates when districts have unusual spikes in activity (e.g., spatially join data,
aggregate, then forecast the time series).

1Under no circumstances should current projects be given as this would raise some ethical flags.

342 Appendix B: Interview Questions

• For a customer service-focused agency, provide the candidate with a time series of customer requests
and staffing levels by time of day. Ask the candidate to forecast requests for the next two months and
provide recommendations on staffing levels.

• For a performance monitoring team, provide 10 years of key performance indicators. Ask the candidate
to develop labels for distinct types of activity (i.e., clusters of trends).

References

Abowd, John. 2018. Protecting the Confidentiality of America’s Statistics: Adopting Modern Disclosure
Avoidance Methods at the Census Bureau. https://www.census.gov/newsroom/blogs/research-matters/
2018/08/protecting_the_confi.html

Aggarwal, Charu C. 2018a. Machine Learning for Text, 1st ed. Springer

Aggarwal, Charu C. 2018b. Neural Networks and Deep Learning: A Textbook. Springer. https://doi.org/10.
1007/978-3-319-94463-0

Akaike, H.: A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control
19(6), 716–23 (1974)

Akaike, Hirotogu. 1973. Information Theory and an Extension of the Maximum Likelihood Principle. In
Proceeding of the Second International Symposium on Information Theory, 267–81

Alaimo, Katherine, Christine M. Olson, and Edward A. Frongillo. 1999. Importance of Cognitive Testing
for Survey Items: An Example from Food Security Questionnaires. Journal of Nutrition Education 31 (5):
269–75. https://doi.org/10.1016/S0022-3182(99)70463-2

Alan Turing Institute. 2020. Alan Turing Institute - About Us. https://www.turing.ac.uk/about-us

Amazon. 2018. Amazon Selects New York City and Northern Virginia for New Headquarters,
November. https://blog.aboutamazon.com/company-news/amazon-selects-new-york-city-and-northern-
virginia-for-new-headquarters

Angrist, Joshua D., Keueger, Alan B.: Does Compulsory School Attendance Affect Schooling and Earnings?
The Quarterly Journal of Economics 106(4), 979–1014 (1991)

Angwin, Julia, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine Bias. ProPublica, May.
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Arrington, Michael. 2006. AOL Proudly Releases Massive Amounts of Private Data. Tech Crunch. https://
techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/

Arun, R., V. Suresh, C.E. Veni Madhavan, and M.N. Narasimha Murthy. 2010. On Finding the Natural
Number of Topics with Latent Dirichlet Allocation: Some Observations. In Advances in Knowledge Dis-
covery and Data Mining, ed. Mohammed J. Zaki, Jeffrey Xu Yu, B. Ravindran, and Vikram Pudi, 391–402.
Berlin, Heidelberg: Springer

Aschwanden, Andy, Mark A. Fahnestock, Martin Truffer, Douglas J. Brinkerhoff, Regine Hock, Constantine
Khroulev, Ruth Mottram, and S. Abbas Khan. 2019. Contribution of the Greenland Ice Sheet to Sea Level
over the Next Millennium. Science Advances 5 (6). https://doi.org/10.1126/sciadv.aav9396

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2

343

https://www.census.gov/newsroom/blogs/research-matters/2018/08/protecting_the_confi.html
https://www.census.gov/newsroom/blogs/research-matters/2018/08/protecting_the_confi.html
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1016/S0022-3182(99)70463-2
https://www.turing.ac.uk/about-us
https://blog.aboutamazon.com/company-news/amazon-selects-new-york-city-and-northern-virginia-for-new-headquarters
https://blog.aboutamazon.com/company-news/amazon-selects-new-york-city-and-northern-virginia-for-new-headquarters
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/
https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/
https://doi.org/10.1126/sciadv.aav9396
https://doi.org/10.1007/978-3-030-71352-2

344 References

Athey, Susan, and Guido W Imbens. 2018. Design-Based Analysis in Difference-in-Differences Settings with
Staggered Adoption. National Bureau of Economic Research

Athey, Susan, and Stefan Wager. 2019. Estimating Treatment Effects with Causal Forests: An Application.
arXiv:1902.07409

Avirgan, Jody. 2016. A History of Data in American Politics (Part 2): Obama 2008 to the Present. FiveThir-
tyEight. https://fivethirtyeight.com/features/a-history-of-data-in-american-politics-part-2-obama-2008-
to-the-present/

Ayalew, Lulseged, and Hiromitsu Yamagishi. 2005. The Application of Gis-Based Logistic Regression for
Landslide Susceptibility Mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65
(1): 15–31. http://www.sciencedirect.com/science/article/pii/S0169555X04001631

Bajari, Pat, Zhihao Cen, Victor Chernozhukov, Ramon Huerta, Junbo Li, Manoj Manukonda, and George
Monokroussos. 2020. New Goods, Productivity and the Measurement of Inflation. AEA Conference. Amer-
ican Economic Association

BBC. 2017. US Homeless People Numbers Rise for First Time in Seven Years, December. https://www.bbc.
com/news/world-us-canada-42248999

Beck, Martin, Florian Dumpert, and Joerg Feuerhake. 2018. Machine Learning in Official Statistics. CoRR
abs/1812.10422. arXiv:1812.10422

Belloni, Alexandre, Victor Chernozhukov, and Ying Wei. 2016. Post-Selection Inference for Generalized Lin-
ear Models with Many Controls. Journal of Business & Economic Statistics 34. https://www.tandfonline.
com/doi/abs/10.1080/07350015.2016.1166116?journalCode=ubes20

Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan. 2004. How Much Should We Trust Differences-
in-Differences Estimates? The Quarterly Journal of Economics 119 (1): 249–75

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Berlin, Heidelberg: Springer

Black, Sandra E. 1999. Do Better Schools Matter? Parental Valuation of Elementary Education. The Quar-
terly Journal of Economics 114 (2): 577–99. http://www.jstor.org/stable/2587017

Blei, David M., Ng, Andrew Y., Jordan, Michael I.: Latent Dirichlet Allocation. Journal of Machine Learning
Research 3(4–5), 993–1022 (2003)

Bollen, Johan, Huina Mao, and Xiaojun Zeng. 2011. Twitter Mood Predicts the Stock Market. Journal of
Computational Science 2 (1): 1–8. https://doi.org/10.1016/j.jocs.2010.12.007

Bolukbasi, Tolga, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. 2016. Man Is to
Computer Programmer as Woman Is to Homemaker? Debiasing Word Embeddings. In Proceedings of the
30th International Conference on Neural Information Processing Systems, 4356–64. NIPS’16. Red Hook,
NY, USA: Curran Associates Inc

Breiman, Leo: Random Forests. Machine Learning 56(1), 5–32 (2001)

Breiman, Leo: Bagging Predictors. Machine Learning 24(2), 123–40 (1996)

Breiman, Leo, Jerome Friedman, Charles J. Stone, and R.A. Olshen. 1984. Classification and Regression
Trees. The Wadsworth and Brooks-Cole Statistics-Probability Series. Taylor & Francis

Brennan, Allison. 2012. Microtargeting: How Campaigns Know You Better Than You Know Yourself. CNN.
https://www.cnn.com/2012/11/05/politics/voters-microtargeting/index.html

Broockman, David, Joshua Kalla, and Peter Aronow. 2015. Irregularities in Lacour (2014), May. https://
stanford.edu/~dbroock/broockman_kalla_aronow_lg_irregularities.pdf

http://arxiv.org/abs/1902.07409
https://fivethirtyeight.com/features/a-history-of-data-in-american-politics-part-2-obama-2008-to-the-present/
https://fivethirtyeight.com/features/a-history-of-data-in-american-politics-part-2-obama-2008-to-the-present/
http://www.sciencedirect.com/science/article/pii/S0169555X04001631
https://www.bbc.com/news/world-us-canada-42248999
https://www.bbc.com/news/world-us-canada-42248999
http://arxiv.org/abs/1812.10422
https://www.tandfonline.com/doi/abs/10.1080/07350015.2016.1166116?journalCode=ubes20
https://www.tandfonline.com/doi/abs/10.1080/07350015.2016.1166116?journalCode=ubes20
http://www.jstor.org/stable/2587017
https://doi.org/10.1016/j.jocs.2010.12.007
https://www.cnn.com/2012/11/05/politics/voters-microtargeting/index.html
https://stanford.edu/~dbroock/broockman_kalla_aronow_lg_irregularities.pdf
https://stanford.edu/~dbroock/broockman_kalla_aronow_lg_irregularities.pdf

References 345

Buolamwini, Joy, and Timnit Gebru. 2018. Gender Shades: Intersectional Accuracy Disparities in Commercial
Gender Classification. In Conference on Fairness, Accountability and Transparency, 77–91

Burgess, Matt. 2019. What Is Gdpr? The Summary Guide to Gdpr Compliance in the Uk. Wired. https://
www.wired.co.uk/article/what-is-gdpr-uk-eu-legislation-compliance-summary-fines-2018

Burns, Bob. 2012. Individuals on the No Fly List Are Not Issued Boarding Passes. Transportation Security
Administration Blog, May. https://www.tsa.gov/blog/2012/05/11/individuals-no-fly-list-are-not-issued-
boarding-passes

Cain, Aine, Anaele Pelisson, and Shayanne Gal. 2018. 9 Places in the Us Where Job Candidates May Never
Have to Answer the Dreaded Salary Question Again. Business Insider, April. https://www.businessinsider.
com/places-where-salary-question-banned-us-2017-10?r=US&IR=T

Calonico, Sebastian, Cattaneo, Matias D., Titiunik, Rocio: Robust Nonparametric Confidence Intervals for
Regression-Discontinuity Designs. Econometrica 82(6), 2295–2326 (2014)

Cao, Juan, Tian Xia, Jintao Li, Yongdong Zhang, and Sheng Tang. 2009. A Density-Based Method for
Adaptive Lda Model Selection. Neurocomputing 72 (7): 1775–81. https://doi.org/10.1016/j.neucom.2008.
06.011

Card, David, and Alan Krueger. 1994. Minimum Wages and Employment: A Case Study of the Fast-Food
Industry in New Jersey and Pennsylvania. American Economic Review 84: 772–93

Carlson, Ben. 2019. These Charts Show Just How Awful the Economy Was When Paul Volcker Took over
as Fed Chairman. Fortune, December. https://fortune.com/2019/12/09/charts-1973-19174-economy-paul-
volcker-fed-chair

Centers for Disease Control. 2017. Leading Causes of Death and Numbers of Deaths, by Sex, Race, and
Hispanic Origin: United States, 1980 and 2016. https://www.cdc.gov/nchs/data/hus/2017/019.pdf

Chambers, Bill, and Matei Zaharia. 2018. Spark: The Definitive Guide

Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. SMOTE: Synthetic
Minority over-Sampling Technique. Journal of Artificial Intelligence Research

Chen, Jeffrey C., Abe Dunn, Kyle Hood, Alexander Driessen, and Andrea Batch. 2019. Off to the Races: A
Comparison of Machine Learning and Alternative Data for Predicting Economic Indicators. Book. In Big
Data for 21st Century Economic Statistics, by Katharine G. Abraham, Ron S. Jarmin, Brian Moyer, and
Matthew D. Shapiro. National Bureau of Economic Research; University of Chicago Press. http://www.
nber.org/chapters/c14268

Chen, Tianqi, and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the
22Nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 785–94. KDD ’16.
San Francisco, California, USA: ACM. https://doi.org/10.1145/2939672.2939785

Chicago Police Department. 2018. Crimes - 2001 to Present. https://data.cityofchicago.org/Public-Safety/
Crimes-2001-to-present/ijzp-q8t2/data

Chollet, Francois, and J.J. Allaire. 2018. Deep Learning with R. Shelter Island, NY: Manning Publications

Cillizza, Chris. 2007. Romney’s Data Cruncher. The Washington Post. http://www.washingtonpost.com/
wp-dyn/content/article/2007/07/04/AR2007070401423.html

Cleveland, Robert B, William S Cleveland, and Irma Terpenning. 1990. STL: A Seasonal-Trend Decompo-
sition Procedure Based on Loess. Journal of Official Statistics 6 (1)

Cohen, Jacob. 1960. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measure-
ment 20 (1): 37–46. https://doi.org/10.1177/001316446002000104

https://www.wired.co.uk/article/what-is-gdpr-uk-eu-legislation-compliance-summary-fines-2018
https://www.wired.co.uk/article/what-is-gdpr-uk-eu-legislation-compliance-summary-fines-2018
https://www.tsa.gov/blog/2012/05/11/individuals-no-fly-list-are-not-issued-boarding-passes
https://www.tsa.gov/blog/2012/05/11/individuals-no-fly-list-are-not-issued-boarding-passes
https://www.businessinsider.com/places-where-salary-question-banned-us-2017-10?r=US&IR=T
https://www.businessinsider.com/places-where-salary-question-banned-us-2017-10?r=US&IR=T
https://doi.org/10.1016/j.neucom.2008.06.011
https://doi.org/10.1016/j.neucom.2008.06.011
https://fortune.com/2019/12/09/charts-1973-19174-economy-paul-volcker-fed-chair
https://fortune.com/2019/12/09/charts-1973-19174-economy-paul-volcker-fed-chair
https://www.cdc.gov/nchs/data/hus/2017/019.pdf
http://www.nber.org/chapters/c14268
http://www.nber.org/chapters/c14268
https://doi.org/10.1145/2939672.2939785
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2/data
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2/data
http://www.washingtonpost.com/wp-dyn/content/article/2007/07/04/AR2007070401423.html
http://www.washingtonpost.com/wp-dyn/content/article/2007/07/04/AR2007070401423.html
https://doi.org/10.1177/001316446002000104

346 References

Cohen, Peter, Robert Hahn, Jonathan Hall, Steven Levitt, and Robert Metcalfe. 2016. Using Big Data to
Estimate Consumer Surplus: The Case of Uber. Working Paper 22627. Working Paper Series. National
Bureau of Economic Research. https://doi.org/10.3386/w22627

Commission of European Communities. 2002. Commission Regulation (Ec) No 831/2002. https://eur-lex.
europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32002R0831

Cook, Thomas D, and Vivian C Wong. 2008. Empirical Tests of the Validity of the Regression Discontinuity
Design. Annales d’Economie et de Statistique, 127–50

Corbett-Davies, Sam, Emma Pierson, Avi Feller, and Sharad Goel. 2016. A Computer Program Used
for Bail and Sentencing Decisions Was Labeled Biased Against Blacks. It’s Actually Not That
Clear. The Washington Post. https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-
an-algorithm-be-racist-our-analysis-is-more-cautious-than-propublicas

Corbett-Davies, Sam, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. 2017. Algorithmic Decision
Making and the Cost of Fairness. In Proceedings of the 23rd Acm Sigkdd International Conference on
Knowledge Discovery and Data Mining, 797–806. KDD ’17. New York, NY, USA: Association for Com-
puting Machinery. https://doi.org/10.1145/3097983.3098095

Council of European Union. 2014. Council Regulation (EU) No 269/2016. https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3265-1-1

Cox, Lawrence H. 1980. Suppression Methodology and Statistical Disclosure Control. Journal of the American
Statistical Association 75 (370): 377–85. http://www.jstor.org/stable/2287463

Crutsinger, Martin. 2019. US Deficit Hits Nearly $1 Trillion. When Will It Matter? Associated Press, October.
https://apnews.com/caeb6d6c4eff45e4bc5da12db06004bc

Curry, Tom. 2007. The Mechanics of Micro-Targeting. NBC News. http://www.nbcnews.com/id/15292903/
ns/politics-tom_curry/t/mechanics-micro-targeting/#.XUDzgZNKgb1

Dastin, Jeffrey. 2018. Amazon Scraps Secret Ai Recruiting Tool That Showed Bias Against Women. Reuters.
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-
recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

Datta, Amit, Michael Carl Tschantz, and Anupam Datta. 2014. Automated Experiments on Ad Privacy
Settings: A Tale of Opacity, Choice, and Discrimination. arXiv:1408.6491

Davenport, Thomas H., and D. J. Patil. 2012. Data Scientist: The Sexiest Job of the 21st Century. Harvard
Business Review. https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century

DeNisco Rayome, Alison. 2019. How Has Gdpr Actually Affected Businesses? TechRepublic, May. https://
www.techrepublic.com/article/how-has-gdpr-actually-affected-businesses/

Dillet, Romain. 2019. French Data Protection Watchdog Fines Google $57 Million Under the
Gdpr. Tech Crunch. https://techcrunch.com/2019/01/21/french-data-protection-watchdog-fines-google-
57-million-under-the-gdpr

Dobnik, Verena. 2007. Two Firefighters Dead at 7-Alarm Deutsche Bank Blaze. New York
Daily News, August. https://www.nydailynews.com/news/firefighters-dead-7-alarm-deutsche-bank-blaze-
article-1.238838

Dwork, Cynthia. 2011. Differential Privacy. In Encyclopedia of Cryptography and Security, ed. Henk C.A.
van Tilborg and Sushil Jajodia, 338–40. Boston, MA: Springer. https://doi.org/10.1007/978-1-4419-5906-
5_752

Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrating Noise to Sensitivity
in Private Data Analysis. In Theory of Cryptography, ed. Shai Halevi and Tal Rabin, 265–84. Berlin,
Heidelberg: Springer

https://doi.org/10.3386/w22627
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32002R0831
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32002R0831
https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-an-algorithm-be-racist-our-analysis-is-more-cautious-than-propublicas
https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-an-algorithm-be-racist-our-analysis-is-more-cautious-than-propublicas
https://doi.org/10.1145/3097983.3098095
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3265-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3265-1-1
http://www.jstor.org/stable/2287463
https://apnews.com/caeb6d6c4eff45e4bc5da12db06004bc
http://www.nbcnews.com/id/15292903/ns/politics-tom_curry/t/mechanics-micro-targeting/#.XUDzgZNKgb1
http://www.nbcnews.com/id/15292903/ns/politics-tom_curry/t/mechanics-micro-targeting/#.XUDzgZNKgb1
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
http://arxiv.org/abs/1408.6491
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://www.techrepublic.com/article/how-has-gdpr-actually-affected-businesses/
https://www.techrepublic.com/article/how-has-gdpr-actually-affected-businesses/
https://techcrunch.com/2019/01/21/french-data-protection-watchdog-fines-google-57-million-under-the-gdpr
https://techcrunch.com/2019/01/21/french-data-protection-watchdog-fines-google-57-million-under-the-gdpr
https://www.nydailynews.com/news/firefighters-dead-7-alarm-deutsche-bank-blaze-article-1.238838
https://www.nydailynews.com/news/firefighters-dead-7-alarm-deutsche-bank-blaze-article-1.238838
https://doi.org/10.1007/978-1-4419-5906-5_752
https://doi.org/10.1007/978-1-4419-5906-5_752

References 347

Dwork, Cynthia, Aaron Roth, and others. 2014. The Algorithmic Foundations of Differential Privacy. Foun-
dations and Trends in Theoretical Computer Science 9 (3–4): 211–407

Edwards, Lilian, and Michael Veale. 2018. Enslaving the Algorithm: From a ‘Right to an Explanation’ to a
‘Right to Better Decisions’? IEEE Security Privacy 16 (3): 46–54

Elis, Niv. 2019. 2019 Deficit Nears $1 Trillion, Highest Since 2012: Treasury. The Hill, October. https://
thehill.com/policy/finance/467488-2019-deficit-nears-1-trillion-highest-since-2012-treasury

Enamorado, Ted, Benjamin Fifield, and Kosuke Imai. 2019. Using a Probabilistic Model to Assist Merging
of Large-Scale Administrative Records. American Political Science Association 113 (2): 353–71

Energy Information Administration. 2019. Electric Power Monthly. https://www.eia.gov/electricity/
monthly/epm_table__rapher.php?t=epmt_1_01

Energy Information Administration. 2007. Spot Prices for Crude Oil and Petroleum Products. http://www.
eia.gov/dnav/pet/pet_pri_spt_s1_d.htm

Eurostat. 2020. EU Labour Force Survey Database. https://ec.europa.eu/eurostat/documents/1978984/
6037342/EULFS-Database-UserGuide.pdf

Federal Reserve Bank of Philadelphia. 2019. Real-Time Data Set for Macroeconomists. https://www.
philadelphiafed.org/research-and-data/real-time-center/real-time-data

Fellegi, Ivan P., Sunter, Alan B.: A Theory of Record Linkage. Journal of the American Statistical Association
64, 1183–1210 (1969)

Fitzpatrick, Jen, and Karen DeSalvo. 2020. Helping Public Health Officials Combat Covid-19. Google - the
Keyword Blog. https://www.blog.google/technology/health/covid-19-community-mobility-reports

Franck, Thomas. 2019. Federal Deficit Increases 26% to $984 Billion for Fiscal 2019, Highest in 7
Years. CNBC, October. https://www.cnbc.com/2019/10/25/federal-deficit-increases-26percent-to-984-
billion-for-fiscal-2019.html

Frenkel, Sheera, and Mike Isaac. 2018. Facebook Gives Workers a Chatbot to Appease That Prying Uncle.
The New York Times, December. https://www.nytimes.com/2019/12/02/technology/facebook-chatbot-
workers.html

Friedman, Jerome: Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics
29(5), 1189–1232 (2001)

Gaba, Kwawu Mensan, Brian Min, Anand Thakker, and Chris Elvidge. 2016. Twenty Years of India Lights.
http://india.nightlights.io/

Gelman, Andrew, and Guido Imbens. 2018. Why High-Order Polynomials Should Not Be Used in Regression
Discontinuity Designs. Journal of Business and Economic Statistics, 1–10

Geron, Aurelien. 2017. Hands-on Machine Learning with Scikit-Learn and Tensorflow: Concepts, Tools, and
Techniques to Build Intelligent Systems. Sebastopol, CA: O’Reilly Media

Gonzalez-Ibanez, Roberto, Smaranda Muresan, and Nina Wacholder. 2011. Identifying Sarcasm in Twitter:
A Closer Look. In Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, 581–86. Portland, Oregon, USA: Association for Computational
Linguistics. https://www.aclweb.org/anthology/P11-2102

Goo, Sara Kehaulani. 2004. Sen. Kennedy Flagged by No-Fly List. Washington Post. http://www.
washingtonpost.com/wp-dyn/articles/A17073-2004Aug19.html

Goodman-Bacon, Andrew. 2018. Difference-in-Differences with Variation in Treatment Timing. National
Bureau of Economic Research

https://thehill.com/policy/finance/467488-2019-deficit-nears-1-trillion-highest-since-2012-treasury
https://thehill.com/policy/finance/467488-2019-deficit-nears-1-trillion-highest-since-2012-treasury
https://www.eia.gov/electricity/monthly/epm_table__rapher.php?t=epmt_1_01
https://www.eia.gov/electricity/monthly/epm_table__rapher.php?t=epmt_1_01
http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
https://ec.europa.eu/eurostat/documents/1978984/6037342/EULFS-Database-UserGuide.pdf
https://ec.europa.eu/eurostat/documents/1978984/6037342/EULFS-Database-UserGuide.pdf
https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data
https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data
https://www.blog.google/technology/health/covid-19-community-mobility-reports
https://www.cnbc.com/2019/10/25/federal-deficit-increases-26percent-to-984-billion-for-fiscal-2019.html
https://www.cnbc.com/2019/10/25/federal-deficit-increases-26percent-to-984-billion-for-fiscal-2019.html
https://www.nytimes.com/2019/12/02/technology/facebook-chatbot-workers.html
https://www.nytimes.com/2019/12/02/technology/facebook-chatbot-workers.html
http://india.nightlights.io/
https://www.aclweb.org/anthology/P11-2102
http://www.washingtonpost.com/wp-dyn/articles/A17073-2004Aug19.html
http://www.washingtonpost.com/wp-dyn/articles/A17073-2004Aug19.html

348 References

Google. 2009. Google R Style Guide. https://google.github.io/styleguide/Rguide.xml

Greenberg, Andy. 2017. How One of Apple’s Key Privacy Safeguards Falls Short. Wired. https://www.wired.
com/story/apple-differential-privacy-shortcomings

Greenhouse, Steven. 2002. Labor Lockout at West’s Ports Roils Business. The New York Times, October.
https://www.nytimes.com/2002/10/01/us/labor-lockout-at-west-s-ports-roils-business.html

Hadamard, Jacques: Sur Les Problèmes Aux Dérivées Partielles et Leur Signication Physique. Princeton
University Bulletin 13, 49–52 (1902)

Hamins, Anthony P., Casey Grant, Nelson P. Bryner, Albert W. Jones, and Galen H. Koepke. 2015. Research
Roadmap for Smart Fire Fighting. NIST SP 1191, June. https://doi.org/10.6028/NIST.SP.1191

Hao, Karen. 2019. We Analyzed 16,625 Papers to Figure Out Where Ai Is Headed Next. MIT Technol-
ogy Review, January. https://www.technologyreview.com/2019/01/25/1436/we-analyzed-16625-papers-
to-figure-out-where-ai-is-headed-next

Harrison, David, and Daniel L Rubinfeld. 1978. Hedonic Housing Prices and the Demand for Clean Air.
Journal of Environmental Economics and Management 5 (1): 81–102. https://doi.org/10.1016/0095-
0696(78)90006-2

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of Statistical Learning. Springer
Series in Statistics. New York: Springer

Hastie, Trevor, Robert Tibshirani, and Jerome H. Friedman. 2009. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer

Hazel, James, and Christopher Slobogin. 2018. Who Knows What, and When?: A Survey of the Privacy
Policies Proffered by U.s. Direct-to-Consumer Genetic Testing Companies. Cornell Journal of Law and
Public Policy, Vanderbilt Law Research Paper No. 18-18. https://ssrn.com/abstract=3165765

Hearn, Rose Gill, Nicholas Scoppetta, and Robert LiMadri. 2009. Investigation of Administrative Issues
Relating to the Fatal Fire of August 18, 2007 at 130 Liberty Street, June. https://www1.nyc.gov/assets/
doi/downloads/pdf/pr_db_61909_final.pdf

Hernandez, Michael J. 2013. Database Design for Mere Mortals: A Hands-on Guide to Relational Database
Design Inc. USA: Addison-Wesley Longman Publishing Co., Inc

Hess, Abigail. 2019. Women Are Slowly Pursuing More High-Paying Degrees, but the Pay Gap Remains,
Says New Research. CNBC, October. https://www.cnbc.com/2019/10/04/women-are-pursuing-more-
high-paying-degrees-but-the-pay-gap-remains.html

Higgins, Tim. 2016. Sanders Supporters Like Chipotle, While Trump Fans Prefer Sonic. Bloomberg.
https://www.bloomberg.com/news/articles/2016-02-18/sanders-supporters-like-chipotle-while-trump-
fans-prefer-sonic

Highways England. 2020. Highways England Pavement Management System Network Layer. https://
data.gov.uk/dataset/2b0dd22d-213e-4f5b-99da-8b5ec409112c/highways-england-pavement-management-
system-network-layer

HM Land Registry Public Data. 2019. UK Housing Price Index. https://landregistry.data.gov.uk/app/ukhpi

Hoerl, A.E., and R.W. Kennard. 1970. Ridge Regression: Applications to Non-Orthogonal Problems. Tech-
nometrics 12 (1)

Humphries, Stan. 2019. Introducing a New and Improved Zestimate Algorithm. Zillow. https://www.zillow.
com/tech/introducing-a-new-and-improved-zestimate-algorithm/

https://google.github.io/styleguide/Rguide.xml
https://www.wired.com/story/apple-differential-privacy-shortcomings
https://www.wired.com/story/apple-differential-privacy-shortcomings
https://www.nytimes.com/2002/10/01/us/labor-lockout-at-west-s-ports-roils-business.html
https://doi.org/10.6028/NIST.SP.1191
https://www.technologyreview.com/2019/01/25/1436/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next
https://www.technologyreview.com/2019/01/25/1436/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next
https://doi.org/10.1016/0095-0696(78)90006-2
https://doi.org/10.1016/0095-0696(78)90006-2
https://ssrn.com/abstract=3165765
https://www1.nyc.gov/assets/doi/downloads/pdf/pr_db_61909_final.pdf
https://www1.nyc.gov/assets/doi/downloads/pdf/pr_db_61909_final.pdf
https://www.cnbc.com/2019/10/04/women-are-pursuing-more-high-paying-degrees-but-the-pay-gap-remains.html
https://www.cnbc.com/2019/10/04/women-are-pursuing-more-high-paying-degrees-but-the-pay-gap-remains.html
https://www.bloomberg.com/news/articles/2016-02-18/sanders-supporters-like-chipotle-while-trump-fans-prefer-sonic
https://www.bloomberg.com/news/articles/2016-02-18/sanders-supporters-like-chipotle-while-trump-fans-prefer-sonic
https://data.gov.uk/dataset/2b0dd22d-213e-4f5b-99da-8b5ec409112c/highways-england-pavement-management-system-network-layer
https://data.gov.uk/dataset/2b0dd22d-213e-4f5b-99da-8b5ec409112c/highways-england-pavement-management-system-network-layer
https://data.gov.uk/dataset/2b0dd22d-213e-4f5b-99da-8b5ec409112c/highways-england-pavement-management-system-network-layer
https://landregistry.data.gov.uk/app/ukhpi
https://www.zillow.com/tech/introducing-a-new-and-improved-zestimate-algorithm/
https://www.zillow.com/tech/introducing-a-new-and-improved-zestimate-algorithm/

References 349

Hundepool, Anco, Josep Domingo-Ferrer, Luisa Franconi, Sarah Giessing, Eric Schulte Nordholt, Keith
Spicer, and Peter-Paul de Wolf. 2012. Statistical Disclosure Control. John Wiley & Sons, Ltd. https://doi.
org/10.1002/9781118348239

Hurvich, Clifford M., and Chih-Ling Tsai. 1993. A Corrected Akaike Information Criterion for Vector Autore-
gressive Model Selection. Journal of Time Series Analysis 14(3), 271–79. https://onlinelibrary.wiley.com/
doi/abs/10.1111/j.1467-9892.1993.tb00144.x

Imbens, Guido and Karthik Kalyanaraman. 2012. Optimal Bandwidth Choice for the Regression Disconti-
nuity Estimator. The Review of Economic Studies 79 (3): 933–59

Imbens, Guido W, and Donald B Rubin. 2015. Causal Inference in Statistics, Social, and Biomedical Sciences.
Cambridge University Press

Imbert, Fred. 2017. Stocks Close Higher as Wall Street Shakes Off Us-North Korea Tension. CNBC. https://
www.cnbc.com/2017/08/29/us-stocks-north-korea-missile.html

Isidore, Chris. 2015. West Coast Ports Shut down as Labor Dispute Heats up. CNN. https://money.cnn.
com/2015/02/12/news/companies/port-shutdown

Jalan, Jyotsna, and Martin Ravallion. 2003. Estimating the Benefit Incidence of an Antipoverty Program by
Propensity-Score Matching. Journal of Business & Economic Statistics 21 (1): 19–30. https://doi.org/10.
1198/073500102288618720

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2014. An Introduction to Statistical
Learning: With Applications in R. New York: Springer

Jensen, Meiko, Cedric Lauradoux, and Konstantinos Limniotis. 2019. Pseudonymisation Techniques and
Best Practices. European Union Agency for Cybersecurity. https://www.enisa.europa.eu/publications/
pseudonymisation-techniques-and-best-practices

Kaye, Kate. 2019. New York Just Set a‘Dangerous Precedent’ on Algorithms, Experts Warn. Bloomberg
CityLab. https://www.bloomberg.com/news/articles/2019-12-12/nyc-sets-dangerous-precedent-on-
algorithms

Kayser-Bril, Nicolas. 2020. Google Apologizes After Its Vision Ai Produced Racist Results. Algorithm Watch.
https://algorithmwatch.org/en/story/google-vision-racism/

Kennedy, Courtney, Scott Clement, Mark Blumenthal, and Christopher Wlezien. 2018. An Evaluation of
2016 Election Polls in the U.s. Public Opinion Quarterly 82: 1–3. https://doi.org/10.1093/poq/nfx047

Kim, Been, Rajiv Khanna, and Oluwasanmi O Koyejo. 2016. Examples Are Not Enough, Learn to Criticize!
Criticism for Interpretability. In Advances in Neural Information Processing Systems 29, ed. D.D. Lee, M.
Sugiyama, U.V. Luxburg, I. Guyon, and R. Garnett, 2280–8. Curran Associates, Inc. http://papers.nips.
cc/paper/6300-examples-are-not-enough-learn-to-criticize-criticism-for-interpretability.pdf

Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan. 2017. Inherent Trade-Offs in the Fair Determi-
nation of Risk Scores.’ Proceedings of the 8th Conference on Innovations in Theoretical Computer Science.
arXiv:1609.05807v2

Knight, Will. 2019. AI Is Biased. Here’s How Scientists Are Trying to Fix It. Wired. https://www.wired.
com/story/ai-biased-how-scientists-trying-fix

Koman, Richard. 2006. Democrats Discover Database Cavassing in Time for Nov. Elections. ZDNet. https://
www.zdnet.com/article/democrats-discover-database-cavassing-in-time-for-nov-elections

Krueger, Alan B., Summers, Lawrence H.: Efficiency Wages and the Inter-Industry Wage Structure. Econo-
metrica 56(2), 259–93 (1988)

Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive Modeling. New York: Springer

https://doi.org/10.1002/9781118348239
https://doi.org/10.1002/9781118348239
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.1993.tb00144.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.1993.tb00144.x
https://www.cnbc.com/2017/08/29/us-stocks-north-korea-missile.html
https://www.cnbc.com/2017/08/29/us-stocks-north-korea-missile.html
https://money.cnn.com/2015/02/12/news/companies/port-shutdown
https://money.cnn.com/2015/02/12/news/companies/port-shutdown
https://doi.org/10.1198/073500102288618720
https://doi.org/10.1198/073500102288618720
https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-practices
https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-practices
https://www.bloomberg.com/news/articles/2019-12-12/nyc-sets-dangerous-precedent-on-algorithms
https://www.bloomberg.com/news/articles/2019-12-12/nyc-sets-dangerous-precedent-on-algorithms
https://algorithmwatch.org/en/story/google-vision-racism/
https://doi.org/10.1093/poq/nfx047
http://papers.nips.cc/paper/6300-examples-are-not-enough-learn-to-criticize-criticism-for-interpretability.pdf
http://papers.nips.cc/paper/6300-examples-are-not-enough-learn-to-criticize-criticism-for-interpretability.pdf
http://arxiv.org/abs/1609.05807v2
https://www.wired.com/story/ai-biased-how-scientists-trying-fix
https://www.wired.com/story/ai-biased-how-scientists-trying-fix
https://www.zdnet.com/article/democrats-discover-database-cavassing-in-time-for-nov-elections
https://www.zdnet.com/article/democrats-discover-database-cavassing-in-time-for-nov-elections

350 References

Kwapisz, J.R., G.M. Weiss, and S.A. Moore. 2010. Cell Phone-Based Biometric Identification. 2010 Fourth
IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), September.
https://ieeexplore.ieee.org/document/5634532

LaCour, David, and Joshua Green. 2014. When Contact Changes Minds: An Experiment on Transmission of
Support for Gay Equality. Science 346 (December): 1366–9. https://science.sciencemag.org/content/346/
6215/1366

Laptev, Nikolay, Slawek Smyl, and Santhosh Shanmugam. 2017. Engineering Extreme Event Forecasting at
Uber with Recurrent Neural Networks. Uber Engineering Blog. https://eng.uber.com/neural-networks/

Lardinois, Frederic. 2019. Google Launches an Open-Source Version of Its Differential Privacy Library. Tech
Crunch. https://tcrn.ch/2Lvvqfh

Larson, Jeff, Surya Mattu, Lauren Kirchner, and Julia Angwin. 2016. How We Analyzed the Com-
pas Recidivism Algorithm. ProPublica, May. https://www.propublica.org/article/how-we-analyzed-the-
compas-recidivism-algorithm

Le, Quoc, and Tomas Mikolov. 2014. Distributed Representations of Sentences and Documents. In Proceed-
ings of the 31st International Conference on International Conference on Machine Learning, 32:1188–96.
ICML14. Beijing, China: JMLR.org

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learning. Nature 521 (7553): 436–44. https://
doi.org/10.1038/nature14539

Lee, David S.: Randomized Experiments from Non-Random Selection in Us House Elections. Journal of
Econometrics 142(2), 675–97 (2008)

Lee, David S, and Thomas Lemieux. 2010. Regression Discontinuity Designs in Economics. Journal of Eco-
nomic Literature 48 (2): 281–355

Li, Xingong, Rowley, Rex J., Kostelnick, John C., Braaten, David, Meisel, Joshua, Hulbutta, Kalonie: GIS
Analysis of Global Impacts from Sea Level Rise. Photogrammetric Engineering and Remote Sensing 75,
807–18 (2009)

Li, Xuecao, Yuyu Zhou, and Xia Zhao. 2020. A Harmonized Global Nighttime Light Dataset 1992–2018.
Scientific Data 7 (168). https://doi.org/10.1038/s41597-020-0510-y

Lipton, Zachary C. 2018. The Mythos of Model Interpretability: In Machine Learning, the Concept of Inter-
pretability Is Both Important and Slippery. Queue 16 (3): 31–57. https://doi.org/10.1145/3236386.3241340

Liu, Bing, Minqing Hu, and Junsheng Cheng. 2005. Opinion Observer: Analyzing and Comparing Opinions
on the Web. In Proceedings of the 14th International Conference on World Wide Web, 342?351. New York:
Association for Computing Machinery. https://doi.org/10.1145/1060745.1060797

Lohr, Sharon. 2019. Sampling: Design and Analysis. https://doi.org/10.1201/9780429296284

Lohr, Steve. 2014. For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights. The
New York Times. https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-
insights-is-janitor-work.html

Luraschi, Javier, Kevin Kuo, and Edgar Ruiz. 2019. Mastering Spark with R. O’Reilly Media, Inc

Madaio, Michael, Shang-Tse Chen, Oliver L. Haimson, Wenwen Zhang, Xiang Cheng, Matthew Hinds-
Aldrich, Duen Horng Chau, and Bistra Dilkina. 2016. Firebird: Predicting Fire Risk and Prioritizing
Fire Inspections in Atlanta, KDD ’16, 185–94. https://doi.org/10.1145/2939672.2939682

Mantyla, Mika V., Daniel Graziotin, and Miikka Kuutila. 2018. The Evolution of Sentiment Analysis: A
Review of Research Topics, Venues, and Top Cited Papers. Computer Science Review 27: 16–32. http://
www.sciencedirect.com/science/article/pii/S1574013717300606

https://ieeexplore.ieee.org/document/5634532
https://science.sciencemag.org/content/346/6215/1366
https://science.sciencemag.org/content/346/6215/1366
https://eng.uber.com/neural-networks/
https://tcrn.ch/2Lvvqfh
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/s41597-020-0510-y
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/1060745.1060797
https://doi.org/10.1201/9780429296284
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://doi.org/10.1145/2939672.2939682
http://www.sciencedirect.com/science/article/pii/S1574013717300606
http://www.sciencedirect.com/science/article/pii/S1574013717300606

References 351

Mason, Ross. 2017. Have You Had Your Bezos Moment? What You Can Learn from Amazon. CIO Mag-
azine, August. https://www.cio.com/article/3218667/have-you-had-your-bezos-moment-what-you-can-
learn-from-amazon.html

Mathiowetz, Nancy A., Charlie Brown, and John Bound. 2002. Measurement Error in Surveys of the Low-
Income Population. Studies of Welfare Populations: Data Collection and Research Issues. https://doi.org/
10.17226/10206

McEwen, Melissa. 2018. The Latest Trend for Tech Interviews: Days of Unpaid Homework. Quartz. https://
qz.com/work/1254663/job-interviews-for-programmers-now-often-come-with-days-of-unpaid-homework

McKinney, Wes. 2017. Python for Data Analysis

Meishausen, Nicolai. 2006. Quantile Regression Forests. Journal of Machine Learning Research 7: 983–99.
http://www.jmlr.org/papers/v7/meinshausen06a.html

Mervis, Jeffrey. 2019. Can a Set of Equations Keep U.s. Census Data Private? Science. https://www.
sciencemag.org/news/2019/01/can-set-equations-keep-us-census-data-private

Microsoft. 2018. Computer Generated Building Footprints for the United States. Github Repository. https://
github.com/microsoft/USBuildingFootprints

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. arXiv:1301.3781

Miller, Tim. 2019. Explanation in Artificial Intelligence: Insights from the Social Sciences. Artificial Intelli-
gence 267: 1–38. https://doi.org/10.1016/j.artint.2018.07.007

Mills, Jeffrey, and Kislaya Prasad. 1992. A Comparison of Model Selection Criteria. Econometric Reviews
11 (February): 201–34. https://doi.org/10.1080/07474939208800232

Min, Brian. 2014. Monitoring Rural Electrification by Satellite. The World Bank. http://india.nightlights.
io/

Min, Brian, Kwawu Mensan Gaba. 2014. Tracking Electrification in Vietnam Using Nighttime Lights. Remote
Sensing 6 (10): 9511–29

Mohammad, Saif M., Turney, Peter D.: Crowdsourcing a Word-Emotion Association Lexicon. Computational
Intelligence 29(3), 436–65 (2013)

Moskowitz, Eric. 2011. Weapons in the Battle Vs. Potholes. The Boston Globe. http://archive.boston.com/
news/local/massachusetts/articles/2011/02/09/weapons_in_the_battle_vs_potholes

NASA Earth Science. 2019. MODIS Collection 6 Nrt Hotspot / Active Fire Detections Mcd14dl. https://
www.nasa.gov/feature/goddard/2019/study-predicts-more-long-term-sea-level-rise-from-greenland-ice

National Institute of Standards and Technology. 2016. NIST Net-Zero Energy Residential Test Facility.
https://pages.nist.gov/netzero/research.html

National Oceanic and Atmospheric Administration. 2016. Defense Meteorological Satellite Program (Dmsp).
https://www.ngdc.noaa.gov/eog/dmsp.html

Navarro, Gonzalo. 2001. A Guided Tour to Approximate String Matching. ACM Computing Surveys 33 (1):
31–88. https://doi.org/10.1145/375360.375365

Nicol Turner Lee, Paul Resnick, and Genie Barton. 2019. Algorithmic Bias Detection and Mitigation: Best
Practices and Policies to Reduce Consumer Harms. Brookings, May. https://www.brookings.edu/research/
algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/

https://www.cio.com/article/3218667/have-you-had-your-bezos-moment-what-you-can-learn-from-amazon.html
https://www.cio.com/article/3218667/have-you-had-your-bezos-moment-what-you-can-learn-from-amazon.html
https://doi.org/10.17226/10206
https://doi.org/10.17226/10206
https://qz.com/work/1254663/job-interviews-for-programmers-now-often-come-with-days-of-unpaid-homework
https://qz.com/work/1254663/job-interviews-for-programmers-now-often-come-with-days-of-unpaid-homework
http://www.jmlr.org/papers/v7/meinshausen06a.html
https://www.sciencemag.org/news/2019/01/can-set-equations-keep-us-census-data-private
https://www.sciencemag.org/news/2019/01/can-set-equations-keep-us-census-data-private
https://github.com/microsoft/USBuildingFootprints
https://github.com/microsoft/USBuildingFootprints
http://arxiv.org/abs/1301.3781
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1080/07474939208800232
http://india.nightlights.io/
http://india.nightlights.io/
http://archive.boston.com/news/local/massachusetts/articles/2011/02/09/weapons_in_the_battle_vs_potholes
http://archive.boston.com/news/local/massachusetts/articles/2011/02/09/weapons_in_the_battle_vs_potholes
https://www.nasa.gov/feature/goddard/2019/study-predicts-more-long-term-sea-level-rise-from-greenland-ice
https://www.nasa.gov/feature/goddard/2019/study-predicts-more-long-term-sea-level-rise-from-greenland-ice
https://pages.nist.gov/netzero/research.html
https://www.ngdc.noaa.gov/eog/dmsp.html
https://doi.org/10.1145/375360.375365
https://www.brookings.edu/research/algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/
https://www.brookings.edu/research/algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/

352 References

Nielsen, Finn Årup. 2011. A New Anew: Evaluation of a Word List for Sentiment Analysis in Microblogs.
Proceedings of the ESWC2011 Workshop on ‘Making Sense of Microposts’: Big Things Come in Small
Packages, 93–98

Nigeria National Bureau of Statistics. 2019. General Household Survey, Panel (Ghs-Panel) 2018-2019.
https://microdata.worldbank.org/index.php/catalog/3557

NYC Department of Information Technology and Telecommunication. 2020. 311 Service Requests
from 2010 to Present. https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-
Present/erm2-nwe9/data

NYC Mayor’s Office of Operations. 2012. Mayor’s Management Report, Fy2012, September. https://www1.
nyc.gov/assets/operations/downloads/pdf/mmr0912/0912_mmr.pdf

O’Neil, Cathy: Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy.
Crown Publishing Group, USA (2016)

Owano, Nancy. 2013. Accelerometer in Phone Has Tracking Potential, Researchers Find. Phys.org, October.
https://phys.org/news/2013-10-accelerometer-tracking-potential.html

Page, Carly. 2020. Oracle and Salesforce Hit with $10 Billion Gdpr Class-Action Lawsuit. Forbes. https://
www.forbes.com/sites/carlypage/2020/08/14/oracle-and-salesforce-hit-with-10-billion-gdpr-class-action-
lawsuit

Pak, Alexander, and Patrick Paroubek. 2010. Twitter as a Corpus for Sentiment Analysis and Opinion
Mining. In Proceedings of the Seventh International Conference on Language Resources and Evaluation
(LREC’10). European Language Resources Association (ELRA)

Patten, Eileen. 2016. Racial, Gender Wage Gaps Persist in U.s. Despite Some Progress. Pew
Research, July. https://www.pewresearch.org/fact-tank/2016/07/01/racial-gender-wage-gaps-persist-in-
u-s-despite-some-progress/

Pearl, Judea. 2009. Causality. Cambridge University Press

Pesch, Beate, Benjamin Kendzia, Per Gustavsson, Karl-Heinz Jockel, Georg Johnen Hermann Pohlabeln,
Ann Olsson, Wolfgang Ahrens, et al. 2012. Cigarette Smoking and Lung Cancer–Relative Risk Estimates
for the Major Histological Types from a Pooled Analysis of Case-Control Studies. International Journal
of Cancer 131 (5): 1210–9. https://www.ncbi.nlm.nih.gov/pubmed/22052329

Playfair, William. 1801. The Commercial and Political Atlas, Representing, by Means of Stained Copper-
Plate Charts, the Progress of the Commerce, Revenues, Expenditure, and Debts of England. During the
Whole of the Eighteenth Century. London: Wallis

Port of Long Beach. 2019. TEUs Archive Since 1995. http://www.polb.com/economics/stats/teus_archive.
asp

Public Law 107-347: Title V - Confidential Information Protection and Statistical Efficiency (116 Stat. 2962).
2002. https://www.congress.gov/bill/107th-congress/house-bill/5215/text

Raftery, Adrian E. 1995. Bayesian Model Selection in Social Research. Sociological Methodology 25: 111–63.
http://www.jstor.org/stable/271063

Rahimi, Ali. 2017. Reflections on Random Kitchen Sinks. Argmin Blog. http://www.argmin.net/2017/12/
05/kitchen-sinks/

Rappeport, Alan. 2019. The New York Times, October. https://www.nytimes.com/2019/10/25/us/politics/
us-federal-budget-deficit.html

Ratcliffe, Caroline, and Steven Brown. 2017. Credit Scores Perpetuate Racial Disparities, Even in America’s
Most Prosperous Cities. Urban Wire - the Blog of the Urban Institute. https://www.urban.org/urban-
wire/credit-scores-perpetuate-racial-disparities-even-americas-most-prosperous-cities

https://microdata.worldbank.org/index.php/catalog/3557
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9/data
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9/data
https://www1.nyc.gov/assets/operations/downloads/pdf/mmr0912/0912_mmr.pdf
https://www1.nyc.gov/assets/operations/downloads/pdf/mmr0912/0912_mmr.pdf
https://phys.org/news/2013-10-accelerometer-tracking-potential.html
https://www.forbes.com/sites/carlypage/2020/08/14/oracle-and-salesforce-hit-with-10-billion-gdpr-class-action-lawsuit
https://www.forbes.com/sites/carlypage/2020/08/14/oracle-and-salesforce-hit-with-10-billion-gdpr-class-action-lawsuit
https://www.forbes.com/sites/carlypage/2020/08/14/oracle-and-salesforce-hit-with-10-billion-gdpr-class-action-lawsuit
https://www.pewresearch.org/fact-tank/2016/07/01/racial-gender-wage-gaps-persist-in-u-s-despite-some-progress/
https://www.pewresearch.org/fact-tank/2016/07/01/racial-gender-wage-gaps-persist-in-u-s-despite-some-progress/
https://www.ncbi.nlm.nih.gov/pubmed/22052329
http://www.polb.com/economics/stats/teus_archive.asp
http://www.polb.com/economics/stats/teus_archive.asp
https://www.congress.gov/bill/107th-congress/house-bill/5215/text
http://www.jstor.org/stable/271063
http://www.argmin.net/2017/12/05/kitchen-sinks/
http://www.argmin.net/2017/12/05/kitchen-sinks/
https://www.nytimes.com/2019/10/25/us/politics/us-federal-budget-deficit.html
https://www.nytimes.com/2019/10/25/us/politics/us-federal-budget-deficit.html
https://www.urban.org/urban-wire/credit-scores-perpetuate-racial-disparities-even-americas-most-prosperous-cities
https://www.urban.org/urban-wire/credit-scores-perpetuate-racial-disparities-even-americas-most-prosperous-cities

References 353

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. Why Should I Trust You?: Explaining the
Predictions of Any Classifier. arXiv:1602.04938

Rivera, Ray. 2007. 2 Firefighters Are Dead in Deutsche Bank Fire. New York Times, August. https://
cityroom.blogs.nytimes.com/2007/08/18/2-firefighters-are-dead-in-deutsche-bank-fire/

Roberts, Margaret E., Brandon M. Stewart, and Edoardo M. Airoldi. 2016. A Model of Text for Experimen-
tation in the Social Sciences. Journal of the American Statistical Association 111 (515): 988–1003. https://
doi.org/10.1080/01621459.2016.1141684

Rocher, Luc, Julien M. Hendrickx, and Yves-Alexandre de Montjoye. 2019. Estimating the Success of Re-
Identifications in Incomplete Datasets Using Generative Models. Nature Communications 10. https://
www.nature.com/articles/s41467-019-10933-3

Roman, Jesse. 2014. In Pursuit of Smart. NFPA Journal, November. http://www.nfpa.org/news-and-
research/publications/nfpa-journal/2014/november-december-2014/features/in-pursuit-of-smart

Romell, Rick, and Joe Taschler. 2018. Foxconn Purchases Downtown Racine Property as Part of ‘Smart
City’ Plans Across State. Journal Sentinel, October. https://www.jsonline.com/story/money/business/
2018/10/02/foxconn-develop-downtown-racine-site/1499783002/

Rosenbaum, Paul R., Rubin, Donald B.: The Central Role of the Propensity Score in Observational Studies
for Causal Effects. Biometrika 70(1), 41–55 (1983)

Rowley, Rex J., John C. Kostelnick, David Braaten, Xingong Li, and Joshua Meisel. 2007. Risk of Rising
Sea Level to Population and Land Area. Eos, Transactions American Geophysical Union 88 (9): 105–7.
https://doi.org/10.1029/2007EO090001

Rubin, Donald B. 1976. Inference and Missing Data. Biometrika 63: 581–90. https://doi.org/10.1093/biomet/
63.3.581

Rudin, Cynthia. 2019. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and
Use Interpretable Models Instead. Nature Machine Intelligence 1: 206–15. https://doi.org/10.1038/s42256-
019-0048-x

Samuel, Alexandra. 2018. Amazon’s Mechanical Turk Has Reinvented Research. JSTOR Daily, May. https://
daily.jstor.org/amazons-mechanical-turk-has-reinvented-research/

Santos-Lozada, Alexis R., Jeffrey T. Howard, and Ashton M. Verdery. 2020. How Differential Privacy Will
Affect Our Understanding of Health Disparities in the United States. Proceedings of the National Academy
of Sciences 117 (24): 13405–12. https://doi.org/10.1073/pnas.2003714117

Scherer, Michael. 2012. Inside the Secret World of the Data Crunchers Who Helped Obama Win. Time.
http://swampland.time.com/2012/11/07/inside-the-secret-world-of-quants-and-data-crunchers-who-
helped-obama-win/

Schroeder, Robert. 2019. U.S. Federal Budget Deficit Runs at Nearly $1 Trillion in 2019. Mar-
ket Watch, October. https://www.marketwatch.com/story/us-runs-fiscal-2019-budget-deficit-of-nearly-1-
trillion-2019-10-25

Schwarz, Gideon: Estimating the Dimension of a Model. The Annals of Statistics 6(2), 461–64 (1978)

Schwarz, Gideon: Estimating the Dimension of a Model. The Annals of Statistics 6(2), 461–64 (1978)

SCOUT, NYC. 2020. Street Condition Observations. NYC Mayor’s Office. https://www1.nyc.gov/site/
operations/performance/scout-street-condition-observations.page

Shadish, William R., Thomas D. Cook, and Donald T. Campbell. 2002. Experimental and Quasi-
Experimental Designs for Generalized Causal Inference

http://arxiv.org/abs/1602.04938
https://cityroom.blogs.nytimes.com/2007/08/18/2-firefighters-are-dead-in-deutsche-bank-fire/
https://cityroom.blogs.nytimes.com/2007/08/18/2-firefighters-are-dead-in-deutsche-bank-fire/
https://doi.org/10.1080/01621459.2016.1141684
https://doi.org/10.1080/01621459.2016.1141684
https://www.nature.com/articles/s41467-019-10933-3
https://www.nature.com/articles/s41467-019-10933-3
http://www.nfpa.org/news-and-research/publications/nfpa-journal/2014/november-december-2014/features/in-pursuit-of-smart
http://www.nfpa.org/news-and-research/publications/nfpa-journal/2014/november-december-2014/features/in-pursuit-of-smart
https://www.jsonline.com/story/money/business/2018/10/02/foxconn-develop-downtown-racine-site/1499783002/
https://www.jsonline.com/story/money/business/2018/10/02/foxconn-develop-downtown-racine-site/1499783002/
https://doi.org/10.1029/2007EO090001
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://daily.jstor.org/amazons-mechanical-turk-has-reinvented-research/
https://daily.jstor.org/amazons-mechanical-turk-has-reinvented-research/
https://doi.org/10.1073/pnas.2003714117
http://swampland.time.com/2012/11/07/inside-the-secret-world-of-quants-and-data-crunchers-who-helped-obama-win/
http://swampland.time.com/2012/11/07/inside-the-secret-world-of-quants-and-data-crunchers-who-helped-obama-win/
https://www.marketwatch.com/story/us-runs-fiscal-2019-budget-deficit-of-nearly-1-trillion-2019-10-25
https://www.marketwatch.com/story/us-runs-fiscal-2019-budget-deficit-of-nearly-1-trillion-2019-10-25
https://www1.nyc.gov/site/operations/performance/scout-street-condition-observations.page
https://www1.nyc.gov/site/operations/performance/scout-street-condition-observations.page

354 References

Shinal, John. 2018. Facebook Has a Case Study Showing How Much Its Ad Targeting Tools Helped Pres-
idential Candidate Gary Johnson. CNBC. https://www.cnbc.com/2018/02/21/facebook-targeting-tools-
helped-libertarian-candidate-gary-johnson.html

Singh Walia, Bhavkaran, Qianyi Hu, Jeffrey Chen, Fangyan Chen, Jessica Lee, Nathan Kuo, Palak Narang,
Jason Batts, Geoffrey Arnold, and Michael Madaio. 2018. A Dynamic Pipeline for Spatio-Temporal Fire
Risk Prediction, KDD ’18, 764–73. https://doi.org/10.1145/3219819.3219913

Smith, Greg B. 2013. Mayoral Hopeful Bill de Blasio Has Had Three Different Legal Names, Court Records
Show. NY Daily News, September. http://www.nydailynews.com/news/election/de-blasio-names-de-
blasio-article-1.1463591

Social Security Administration. 2017. Popular Baby Names. https://www.ssa.gov/OACT/babynames/index.
html

Soundex System. 2007. The National Archives, May. https://www.archives.gov/research/census/soundex.
html

Staniak, Mateusz, and Przemysaw Biecek. 1988. Explanations of Model Predictions with Live and breakDown
Packages. R Journal 56 (2): 259–93

Staniak, Mateusz, and Przemyslaw Biecek. 2019. Explanations of Model Predictions with Live and break-
Down Packages. The R Journal 10 (2): 395. https://doi.org/10.32614/rj-2018-072

Stolberg, Sheryl Gay, and Robert Pear. 2003. Obama Signs Health Care Overhaul Bill, with a Flourish. The
New York Times. http://www.nytimes.com/2010/03/24/health/policy/24health.html?mcubz=1

The Battle of New Orleans. 2010. History.com, February. https://www.history.com/this-day-in-history/the-
battle-of-new-orleans

The Economist. 2014. The New Border War, March. https://www.economist.com/united-states/2014/03/
22/the-new-border-war

Thind, Jasjeet. 2016. Regression Model for Home Price Growth Using Repeat Sales. Zillow. https://www.
zillow.com/tech/weighted-repeat-sales/

Thistlethwaite, Donald L., Campbell, Donald T.: Regression-Discontinuity Analysis: An Alternative to the
Ex Post Facto Experiment. Journal of Educational Psychology 51(6), 309 (1960)

Tibshirani, Robert: Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society,
Series B 58(1), 267–88 (1996)

Toohey, M., and K. Strong. 2007. Estimating Biases and Error Variances Through the Comparison of Coin-
cident Satellite Measurements. Journal of Geophysical Research: Atmospheres 112 (D13). https://doi.org/
10.1029/2006JD008192

Trentmann, Nina. 2019. Resonate with Humans and Robots. The Wall Street Journal, November. http://
www.sciencedirect.com/science/article/pii/S187775031100007X

Trump-Pence Campaign. 2020. Official Trump 2020 Campaign Strategy Survey. https://www.donaldjtrump.
com/landing/the-official-2020-strategy-survey

Tufte, Edward R. 1983. The Visual Display of Quantitative Information

Umoh, Ruth. 2018. Why Jeff Bezos Makes Amazon Execs Read 6-Page Memos at the Start of Each Meet-
ing. CNBC, April. https://www.cnbc.com/2018/04/23/what-jeff-bezos-learned-from-requiring-6-page-
memos-at-.html

U.S. Census Bureau. 2017a. Small Area Income and Poverty Estimates (Saipe) Program. https://www.
census.gov/programs-surveys/saipe.html

https://www.cnbc.com/2018/02/21/facebook-targeting-tools-helped-libertarian-candidate-gary-johnson.html
https://www.cnbc.com/2018/02/21/facebook-targeting-tools-helped-libertarian-candidate-gary-johnson.html
https://doi.org/10.1145/3219819.3219913
http://www.nydailynews.com/news/election/de-blasio-names-de-blasio-article-1.1463591
http://www.nydailynews.com/news/election/de-blasio-names-de-blasio-article-1.1463591
https://www.ssa.gov/OACT/babynames/index.html
https://www.ssa.gov/OACT/babynames/index.html
https://www.archives.gov/research/census/soundex.html
https://www.archives.gov/research/census/soundex.html
https://doi.org/10.32614/rj-2018-072
http://www.nytimes.com/2010/03/24/health/policy/24health.html?mcubz=1
https://www.history.com/this-day-in-history/the-battle-of-new-orleans
https://www.history.com/this-day-in-history/the-battle-of-new-orleans
https://www.economist.com/united-states/2014/03/22/the-new-border-war
https://www.economist.com/united-states/2014/03/22/the-new-border-war
https://www.zillow.com/tech/weighted-repeat-sales/
https://www.zillow.com/tech/weighted-repeat-sales/
https://doi.org/10.1029/2006JD008192
https://doi.org/10.1029/2006JD008192
http://www.sciencedirect.com/science/article/pii/S187775031100007X
http://www.sciencedirect.com/science/article/pii/S187775031100007X
https://www.donaldjtrump.com/landing/the-official-2020-strategy-survey
https://www.donaldjtrump.com/landing/the-official-2020-strategy-survey
https://www.cnbc.com/2018/04/23/what-jeff-bezos-learned-from-requiring-6-page-memos-at-.html
https://www.cnbc.com/2018/04/23/what-jeff-bezos-learned-from-requiring-6-page-memos-at-.html
https://www.census.gov/programs-surveys/saipe.html
https://www.census.gov/programs-surveys/saipe.html

References 355

U.S. Census Bureau. 2018a. 2014-2018 ACS PUMS Data Dictionary. https://www2.census.gov/programs-
surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2014-2018.pdf

U.S. Census Bureau. 2018b. County Business Patterns. https://www.census.gov/programs-surveys/cbp.html

U.S. Census Bureau. 2017b. Health Insurance Historical Tables, August. https://www.census.gov/data/
tables/time-series/demo/health-insurance/historical-series/hic.html

U.S. Equal Employment Opportunity Commission. 1979. Questions and Answers to Clarify and Provide a
Common Interpretation of the Uniform Guidelines on Employee Selection Procedures. Federal Register 44

U.S. Fire Administration. 2017. U.S. Fire Statistics. https://www.usfa.fema.gov/data/statistics/

U.S. Global Change Research Program. 1990. Legal Mandate. https://www.globalchange.gov/about/legal-
mandate

U.S. Global Change Research Program. 2018. Fourth National Climate Assessment. Washington, DC, USA:
U.S. Global Change Research Program. https://doi.org/10.7930/NCA4.2018

Vacca, James, Helen K. Rosenthal, Corey D. Johnson, Rafael Salamanca Jr., Vincent J. Gentile, Robert
E. Cornegy Jr., Jumaane D. Williams, Ben Kallos, and Carlos Menchaca. 2017. Automated Decision
Systems Used by Agencies.’ New York City Council. https://legistar.council.nyc.gov/LegislationDetail.
aspx?ID=3137815&GUID=437A6A6D-62E1-47E2-9C42-461253F9C6D0

Verma, Sahil, and Julia Rubin. 2018. Fairness Definitions Explained. In Proceedings of the International
Workshop on Software Fairness, 1–7. FairWare ’18. New York: Association for Computing Machinery.
https://doi.org/10.1145/3194770.3194776

Viescas, John. 2018. SQL Queries for Mere Mortals: A Hands-on Guide to Data Manipulation in Sql.
Addison-Wesley Longman Publishing Co., Inc

Wallace, Tim, Derek Watkins, and John Schwartz. 2018. A Map of Every Building in America. The
New York Times, October. https://www.nytimes.com/interactive/2018/10/12/us/map-of-every-building-
in-the-united-states.html

W. Han, L. Di, Z. Yang. 2019. CropScape - Cropland Data Layer. National Agricultural Statistics Service.
https://nassgeodata.gmu.edu/CropScape/

Wickham, Hadley. 2017. Advanced R. CRC Press. https://adv-r.hadley.nz/

Wickham, Hadley, and Garrett Grolemund. 2017. R for Data Science: Import, Tidy, Transform, Visualize,
and Model Data. 1st ed. O’Reilly Media, Inc

Williams, Henry. 2019. Economic Forecasting Survey. The Wall Street Journal. https://www.wsj.com/
graphics/econsurvey/

Winkler, William E. 1990. String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter
Model of Record Linkage. In Proceedings of the Section on Survey Research Methods, 354–59. American
Statistical Association

Wolper, Allan. 2012. Bill de Blasio and Allan Wolper. Conversations with Allan Wolper. https://beta.prx.
org/stories/81520

Zemel, Rich, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. 2013. Learning Fair Representations,
ed. Sanjoy Dasgupta and David McAllester, 28:325–33. In Proceedings of Machine Learning Research 3.
Atlanta, Georgia, USA: PMLR. http://proceedings.mlr.press/v28/zemel13.html

Zheng, Qiming, Qihao Weng, and Ke Wang. 2019. Developing a New Cross-Sensor Calibration Model for
Dmsp-Ols and Suomi-Npp Viirs Night-Light Imageries. ISPRS Journal of Photogrammetry and Remote
Sensing 153: 36–47. https://doi.org/10.1016/j.isprsjprs.2019.04.019

https://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2014-2018.pdf
https://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2014-2018.pdf
https://www.census.gov/programs-surveys/cbp.html
https://www.census.gov/data/tables/time-series/demo/health-insurance/historical-series/hic.html
https://www.census.gov/data/tables/time-series/demo/health-insurance/historical-series/hic.html
https://www.usfa.fema.gov/data/statistics/
https://www.globalchange.gov/about/legal-mandate
https://www.globalchange.gov/about/legal-mandate
https://doi.org/10.7930/NCA4.2018
https://legistar.council.nyc.gov/LegislationDetail.aspx?ID=3137815&GUID=437A6A6D-62E1-47E2-9C42-461253F9C6D0
https://legistar.council.nyc.gov/LegislationDetail.aspx?ID=3137815&GUID=437A6A6D-62E1-47E2-9C42-461253F9C6D0
https://doi.org/10.1145/3194770.3194776
https://www.nytimes.com/interactive/2018/10/12/us/map-of-every-building-in-the-united-states.html
https://www.nytimes.com/interactive/2018/10/12/us/map-of-every-building-in-the-united-states.html
https://nassgeodata.gmu.edu/CropScape/
https://adv-r.hadley.nz/
https://www.wsj.com/graphics/econsurvey/
https://www.wsj.com/graphics/econsurvey/
https://beta.prx.org/stories/81520
https://beta.prx.org/stories/81520
http://proceedings.mlr.press/v28/zemel13.html
https://doi.org/10.1016/j.isprsjprs.2019.04.019

Index

A
Accelerometer data, 83
Accuracy

accuracy metric, 144, 290–292
error estimate, 203, 204
error rate, 144
model accuracy, 155, 182, 205
model performance, 128, 130, 154, 155, 160,

174, 197, 304, 338
Affirmative action, 290
Agglomerative clustering, 226
American Community Survey (ACS), 94, 151, 204,

223, 341
Anonymizing data, 48
Apache hadoop, 314
Apache spark, 58
Arithmetic functions, 96
Artificial intelligence, 12, 210, 283, 315, 319
Autocorrelation structure, 134
Automated variable selection, 158, 196
Average treatment effect, 166, 170

B
Bias

instrumentation bias, 287
measurement bias, 287, 289, 332
prejudicial bias, 289
recall bias, 287

Bias-variance tradeoff, 137, 175, 176, 339
Bitcoin prices, 176, 177, 183
Bloomberg administration, 299, 321, 328
Boosting

weak learner, 211
Building footprints, 185, 239

C
Causal inference

confounding factors, 167, 221
control group, 113, 150, 163, 164, 166–169,

173, 337
control variables, 158, 161

counterfactual, 150, 163, 166, 167, 170, 172,
174, 182, 183

difference-in-differences, 167, 172, 174
forcing variable, 168
regression discontinuity, 114, 167–169, 330, 341
running variable, 168–171
temporal precedence, 165
treatment effect, 2, 163, 164, 166–171, 173,

174, 182, 183
Census Bureau, 43, 88, 94, 145, 151, 176, 204, 223,

224, 297
Chicago police district, 250, 251, 255
Choropleth map, 250, 251
Class

class function, 16, 21, 22
Classification accuracy, 141–143, 145

classification error, 145, 194
classification threshold, 80, 143–146, 149
concordance statistic, 144
confusion matrix, 143, 144, 189, 290
f1-score, 141, 144, 145
hit rate, 81, 155, 156, 195, 198, 311
positive predictive value, 144, 290
ROC curve, 144, 339
true negative rate, 143, 144
true positive rate, 143, 144

Classification models
anatomy of a classifier, 141
binary outcomes, 3, 141, 147, 151
classification algorithms, 141, 285
decision boundary, 145, 146, 186
minority class, 145, 149, 150, 302
separability, 142, 223

Climate data, 239, 241
Clustering

cluster analysis, 217, 226, 232
clustering techniques, 218, 219, 234, 235, 271
soft clustering, 234
total cluster variance, 221, 222, 224

Comma Separated Values (CSV), 26, 30, 34–37,
59, 241, 244, 245, 247, 248, 264, 318, 330

© Springer Nature Switzerland AG 2021
J. C. Chen et al., Data Science for Public Policy, Springer Series in the Data Sciences,
https://doi.org/10.1007/978-3-030-71352-2

357

https://doi.org/10.1007/978-3-030-71352-2

358 Index

Communicating data science
presentations, 303, 304
research memo, 303, 307
written reports, 304, 306

COMPAS, 141, 289, 291
Computer vision, 289, 311, 312, 329
Confidence interval, 130, 135, 310
Confidential Information Protection and Statisti-

cal Efficiency Act, 295
Control structure

For-loops, 34
If statement, 34, 52
while statements, 55

Coordinate Reference System (CRS), 246–250, 253
Correlation coefficient, 35, 106, 111, 263, 288
Cosine similarity, 263, 266, 279, 280, 338, 340
Cost function, 148, 154, 158, 177, 338
County employment, 88, 231
Credit score, 290, 312, 342
Criminal justice, 140, 253, 291, 292, 339
Cross validation, 154, 155, 157, 159, 180, 189, 191,

203, 205, 208, 340
Cryptographic hash, 76, 296

D
Data ethics, 297
Data manipulation

array indexes, 45
reshaping data, 49
rolling-up, 48
sorting and re-ordering, 47
subsetting, 45

Data mining, 342
Data pipelines, 312, 324, 327
Data privacy

data protection, 295
differential privacy, 297
pseudonymization, 296

Data processing, 25, 33, 34, 46, 57–59, 80, 187,
189, 260, 273, 310, 314, 327, 328, 333

Data product
prediction products, 311
prioritization, 299
reporting dashboards, 308
scoring engines, 313
targeting campaign, 151
targeting lists, 311

Data quality, 74, 79, 94, 111, 182, 248, 287, 289,
296, 302, 303, 332

Data science pipelines, 186, 187, 189, 314, 315
Data science roles

analytics roles, 326
civil service system, 328
data analyst, 29

data engineer, 327
data science manager, 323, 325, 326
data scientist, 325
junior talent, 322
policy analyst, 186
project lead, 324, 325
project team, 325
social scientist, 186
statistician, 326
team manager, 322

Data types
boolean vector, 46
character data, 16, 18
data structures, 3
factor data, 16
logical values, 96
numeric data, 14
working with dates, 16

Data warehousing, 59, 314
Decision tree

attribute test, 197
child node, 195
gini impurity, 197
information gain, 338
leaf node, 203
parent node, 196
recursive partitioning, 197
regression trees, 206
root node, 195
surrogate variable, 199
terminal node, 196

De-duplication, 66, 67
Deep learning

convolutional neural networks, 213
Long Short Term Memory, 213

Defense meteorological satellite program, 178, 287
Density plots, 86, 90–93, 111, 181, 211, 254, 336
Descriptive analysis, 1, 4, 163–165, 175, 182, 326,

327
Deterministic record linkage, 62, 63, 67, 69, 73, 75,

77, 79, 80
Dimensionality reduction, 149, 187, 188, 235
Disclosure avoidance

primary suppressions, 296
pseudonymized identifiers, 296
suppression techniques, 296

Dissimilarity score, 232
Document search, 260, 262, 263, 280
Document similarities, 263
Double lasso selection, 158, 161
Dplyr

dplyr package, 66, 67
Duplicate records, 66

Index 359

E
Economic development, 218, 219, 223, 225, 229
Economy

economic activity, 88, 223, 230
economic data, 103, 223, 230, 235
employment patterns, 232
gross domestic product, 33, 185

Edit distances, 70–73
Emergency services, 185, 238
Error

absolute error, 117, 177, 189
irreducible error, 175

Error term, 54, 116, 169
Euclidean distance, 190, 220, 222
Explainable machine learning

Local Interpretable Model-Agnostic Explana-
tions, 294

partial dependence plot, 208, 209, 294
Exploratory data analysis

discrete distributions, 88
ggplot2 package, 23, 85–88, 92, 105, 111, 112,

132, 208, 232, 246
skewed variables, 92
visual analysis, 108

Extract-Transform-Load (ETL), 33, 34, 59

F
Fairness

predictive equality, 291
predictive parity, 290, 291
protected group, 283, 290
protected variable, 289, 290
statistical parity, 290, 291

Federal budget, 263, 265
Federal Reserve, 108
Financial sanctions, 77
Fire Department of New York (FDNY)

building violations, 142
FireCast, 1, 139, 140, 146, 156, 292, 301, 311
risk buildings, 311, 327

Forecasting
consensus forecast, 201
forecast model, 178, 185

Functions
apply function, 76
stringr functions, 40

G
General data protection regulation, 43, 295
Generalized linear models

glm, 151
likelihood function, 148, 157
logistic regression, 140, 141, 146–152, 157, 158,

161, 162, 186, 212, 214, 292, 293, 312

logistic regression coefficients, 148, 153, 158
Geographic coordinates, 48, 193, 200, 244, 248
Geographic Information Systems (GIS), 148, 237,

245, 256, 341
Github, 3, 10, 14, 22, 26, 29, 43, 77, 85, 129, 132,

158, 188, 192, 204, 223, 230, 242, 248,
252, 253, 273, 313

Global change
sea level, 237, 238

Gradient boosting, 211, 212, 293, 338
Grid search, 159, 188, 191, 203, 207, 226

H
Health care, 7, 151–153, 157, 158, 161, 165, 279,

280, 314
Health insurance, 147, 161, 279, 280
Health Insurance Portability and Accountability

Act, 82, 295
Hedonic model, 118, 132
Help

help function, 27
Hierarchical clustering

cladogram, 227
complete linkage, 228, 229
dendrogram, 24, 226, 227, 229, 231
hierarchical agglomerative clustering, 226, 227,

229–234, 252, 271, 321
linkage method, 227, 229–231
phylogenetic trees, 227
single linkage, 227, 228
singletons, 226, 227, 231
ward’s method, 228, 229

Hiring process
application review, 328
interviews, 328–330, 335
tech test, 329, 330

Housing market, 114, 119, 125, 127, 130, 180
Housing price, 113, 114, 122, 127, 130–132, 135,

174, 293, 305
Huber loss, 180
Human capital, 12, 317
Hurricane Sandy, 193, 200
Hyperparameter tuning, 203, 211
Hypothesis tests, 87, 97, 98, 121, 122, 285

I
Imputation

imputation techniques, 101, 102
Income bracket, 285, 290
Information criteria

Akaike Information Criterion, 129, 146, 152
Bayesian Information Criterion, 129, 146

Installing R, 8
Installing RStudio, 9

360 Index

Interpretation, 2, 111, 121, 124, 130, 131, 140, 149,
152, 158, 161, 165, 192, 197, 198, 231,
241, 259, 273, 276, 292, 293, 305, 337

J
Jaro distance, 71
Jaro similarity, 71
Javascript object notation, 26, 27, 37
Join operators, 67
Joins

cartesian product, 63
composite key, 66
full outer join, 67
fuzzy matching, 65, 69, 70, 73, 76
inner join, 67
left outer join, 67
right outer join, 67

K
Kernel density, 86, 90–93, 111, 142, 181, 211, 220,

253–255, 336
K-means

Elbow method, 222, 232
inverse distance, 190, 194
Silhouette value, 222, 224
stability of clusters, 221

K-nearest neighbors, 4, 24, 99, 186, 187, 189, 190,
194, 222, 227, 338

L
Labor statistics, 230, 296
Language models, 214, 281, 289
Levenshtein distance, 70–72
Linear regression

mean squared error, 116, 117, 141
multiple regression, 114, 123, 124
ordinary least squares, 117, 151
reference level, 126, 305
regression coefficient, 130, 133, 135, 170, 293
regression model, 3, 114, 116–118, 122, 123,

128, 137, 138, 146, 165, 181, 287, 292,
339, 341

regression specification, 124, 127, 182, 293
Logical operators

recommended functions, 35
Logical operators, 15, 47
Logical statement, 52, 55
Loss function, 141, 159, 177–180, 191, 206, 267

M
Machine learning, 3, 4, 8, 27, 94, 101, 114, 141, 158,

161, 174–176, 185–187, 200, 203, 210–212,

214, 215, 267, 281, 283, 284, 286, 292,
294, 297, 300, 315, 317, 319, 326, 327, 338

Majority class, 149
Majority voting, 190, 202
Manhattan distance, 190, 191, 220, 227
Marketing databases, 151, 154, 217
Mean absolute error, 117, 129, 177–179, 189, 207
Mean silhouette, 222, 224–226, 232
Median income, 90, 106, 107, 226
Missing values

complete cases, 96, 99, 100
deletion, 99, 332
listwise deletion, 99, 102
missing at random, 97, 98
missing completely at random, 97, 98, 100,

102
missing data, 165, 166, 199, 332
not missing at random, 101

Modeling
input variable, 86, 113, 114, 117–119, 121, 123–

125, 128, 130, 137, 141, 142, 146, 149,
150, 157, 159, 160, 165, 174, 176, 186,
190–192, 195, 196, 199, 205, 209, 212, 213,
218–222, 225, 226, 228, 233, 235, 266, 272,
293, 294

target variable, 113, 114, 117–119, 121, 123,
125, 128, 146, 149, 159, 161, 176, 185,
188, 200, 204, 218, 222, 292, 293

Model selection, 128, 129, 147
Model specification, 167, 198, 337
Model validation, 175, 179, 180, 188
Multiple imputation, 99, 102

N
NAICS codes, 126, 204, 223
Natural Language Processing

document-term matrix, 262, 264, 281
natural language, 4, 259, 261, 267, 271

Neural networks
activation functions, 212, 213
hidden layer, 212–214

News
news articles, 13, 52, 263, 289, 341

Nowcasting model, 280

O
Object classes

data frame, 18–21, 24, 26, 30, 36–38, 44–49,
51, 52, 54, 56, 66, 73, 75, 76, 95, 96, 99,
101, 118, 119, 126, 136, 151, 154, 155,
172, 178, 181, 188, 189, 224, 225, 230,
233 240–243, 245, 246, 248, 250, 251, 254,
264, 270, 271, 275

Index 361

list class, 20, 21
matrix class, 18, 21
vector objects, 244, 245, 250

Objective function, 117
Observational data, 167
Odds ratio, 147, 148, 150
Open source, 8, 11, 12, 56, 58, 140, 210, 245, 257
Operating models

billable rate, 324
center of excellence, 320, 321
consulting model, 324
hack team, 321–323
internal consultancy, 299, 323, 324
matrix organizations, 324, 325
team mission, 318
technical mentorship, 323, 325

P
Packages

installing packages, 22
installing pacman, 23, 24
loading packages, 23
recommended packages, 24

Parallel computation, 58, 303
Partial effect, 165, 293, 294
Permutation importance, 199, 200
Phonetic algorithms, 70–72
Policy making, 58
Policy narrative, 104, 177, 208, 301
Policy teams, 280, 301
Polygon vector, 244, 250
Population density, 218, 219, 256
Potential outcomes framework, 166, 337
Poverty rate, 91, 224
Prediction

predicted classes, 141, 143, 149, 202
prediction error, 175, 176
predictive accuracy, 146, 186, 199, 290, 291,

303
predictive methods, 183, 215
predictive modeling, 321
risk scores, 140, 289
scoring model, 188, 312

Probabilistic record linkage, 24, 62, 63, 69, 74, 75,
77, 80, 81

Product development
designing for impact, 301
iterate, 55, 187, 270, 272, 303, 304
size up, 302, 303
Version 1, 207, 303

Programming language, 2, 3, 6–8, 12, 25, 29, 39,
42, 44, 45, 58, 187, 199, 326–328

interpreted languages, 7
python, 6–8, 12, 29, 187, 214, 256, 314, 327,

328
RStudio, 8–12, 22, 23, 309, 310

Public health, 150, 182
Public opinion, 266, 285, 307
Public policy, 1–3, 81, 83, 92, 94, 114, 128, 151,

152, 162, 167, 168, 183, 238, 245, 256,
257, 283, 292, 293, 295, 299, 301, 304,
313, 314, 330, 339

Public safety, 248, 291, 300

Q
Quantile plots, 92, 111
Quarterly Census of Employment of Wages, 230

R
Random forest

bagging, 201, 337
bootstrap aggregation, 201, 203, 337
break down, 210, 288, 294
Minimum Node Size, 203
out-of-bag, 203, 204
Quantile Random Forests, 210
random subspace method, 201, 337
variable subsampling, 203

Random sampling, 208, 314
Raster data

raster files, 241–243, 256
raster stack, 242, 243

Recommendation engines, 160, 281
Record linkage

personal identifiers, 296
Regular expressions

character classes, 40–42
escaped characters, 39, 41
matching substrings, 38
quantifiers, 42
recommended text manipulation functions, 39
string search, 40

Regularized regression
coefficient paths, 160
coefficient paths, 160
elastic net regression, 159
LASSO regression, 157, 158, 161, 338
ridge regression, 24, 141, 158, 159, 338

Residential property, 119, 120
R-squared, 124, 128, 130, 149, 189, 207

S
Sampling bias, 285, 286
Sampling error, 175, 176

362 Index

Sanction list, 77
Satellite imagery

CropScape, 191
imagery data, 293
MODIS, 245–247
nighttime lights, 178, 179, 218, 287
radiance distribution, 219

Scatter plot, 105–109, 111, 115, 164, 169, 170, 225
Selection bias, 167
Sensitive data

sensitive values, 296
social security number, 43, 63, 66

Sentiment analysis
sentiment score, 266, 267, 270, 271, 273

Sentiment lexicon
AFINN dictionary, 268

Shapefile
polygon shapefile, 249

Shrinkage parameter, 157, 160, 211
Social media, 1, 8, 213, 217, 259, 280
Social services, 62, 81, 341
Software design, 28, 59
Solar arrays, 30
Soundex, 68, 71–73, 75
Spatial analysis

spatial relationship, 238, 252, 281
Spatial autocorrelation, 256, 257
Spatial data

decimal degrees, 193, 246, 247
spatial dimension, 238
vector files, 4, 244, 246, 248

Spatial join, 250
Stack overflow, 12, 27
Standard error, 121, 130, 147, 152, 158
State of the union, 260, 261, 271, 273
Statistical programming, 2, 3, 6
Stop words, 261–266, 270, 275
Structured query language, 8, 29, 59, 314, 326–328
Summary

aggregating data, 48
summary statistics, 2, 49, 88, 108, 142, 163,

164, 235, 242, 243, 251, 296, 309

T
Tabular data, 2, 33, 59, 186, 203, 240, 256, 261
Team structures

hourly billable rate, 324
Tech companies, 114, 225, 281, 328, 330
Term Frequency-Inverse Document Frequency (TF-

IDF)
inverse document frequency, 262
term frequencies, 262–266, 270

Test set, 154, 155, 159, 178, 195, 199, 203, 330, 341
Time series

differenced time series, 134, 135
random walk, 54, 55
seasonal decomposition, 104, 105
seasonal dummy forecast, 136, 137
seasonal pattern, 49, 104, 105, 132, 134, 137,

178
time series object, 104, 134
time trend, 127, 173, 178, 326
time series object, 132

Topic assignment, 272, 273
Topic distribution, 271, 273
Topic model, 271–275, 281, 338
Topic probabilities, 277, 279–281, 338
Topic proportion, 272, 273, 276, 277
Topic correlation, 277
Training data, 148, 155, 176, 188, 190, 283, 290
Tuning parameter, 157, 159, 194

U
Unstructured data, 212, 311
Unsupervised learning, 4, 218, 234, 260, 271, 276
User need

use cases, 4, 8, 12, 29, 33, 58, 59, 81, 102, 129,
141, 142, 149, 161, 162, 185–187, 204, 210,
214, 226, 229, 240, 242, 261, 264, 267,
272, 280, 281, 289, 291–293, 302, 307, 310,
311, 319, 326, 330, 332

User-written functions, 34, 56

V
Variable importance, 189, 198–200, 203, 204, 207,

208, 293, 304
Variable selection, 137, 158, 159, 192, 198, 200,

204, 303
Variable types

categorical variable, 86, 125, 126, 129, 131,
137, 191, 207

discrete variables, 85, 88, 89, 91, 97, 99, 125,
142, 143, 159, 191, 200, 203, 204, 220, 302

dummy variables, 15, 68, 69, 97, 98, 125–127,
159, 173, 203, 207

Variance inflation factors, 149, 153, 336
Visualization

visual analytics, 3, 5, 309

W
Watch lists, 77
Web browsers, 3, 7, 112
Web maps, 112
Web scraping, 52
Web traffic, 218, 230
Whisker plots, 135
Whiteboard assessment, 329
Wikipedia, 269, 271

Index 363

William playfair, 5
Word clouds, 277, 278
Word counts, 261, 264, 265

Word embeddings, 281, 289
Word frequencies, 261, 265
Word representations, 281

	Preface
	Contents
	1 An Introduction
	1.1 Why we wrote this book
	1.2 What we assume
	1.3 How this book is structured

	2 The Case for Programming
	2.1 Doing visual analytics since the 1780s
	2.2 How does programming work?
	2.3 Setting up R and RStudio
	2.3.1 Installing R
	2.3.2 Installing RStudio
	2.3.3 DIY: Running your first code snippet

	2.4 Making the case for open-source software

	3 Elements of Programming
	3.1 Data are everywhere
	3.2 Data types
	3.2.1 numeric
	3.2.2 character
	3.2.3 logical
	3.2.4 factor
	3.2.5 date
	3.2.6 The class function

	3.3 Objects in R
	3.4 R's object classes
	3.4.1 vector
	3.4.2 matrix
	3.4.3 data.frame
	3.4.4 list
	3.4.5 The class function, v2
	3.4.6 More classes

	3.5 Packages
	3.5.1 Base R and the need to extend functionality
	3.5.2 Installing packages
	3.5.3 Loading packages
	3.5.4 Package management and pacman

	3.6 Data input/output
	3.6.1 Directories
	3.6.2 Load functions
	3.6.3 Datasets

	3.7 Finding help
	3.7.1 Help function
	3.7.2 Google and online communities

	3.8 Beyond this chapter
	3.8.1 Best practices
	3.8.2 Further study

	3.9 DIY: Loading solar energy data from the web

	4 Transforming Data
	4.1 Importing and assembling data
	4.1.1 Loading files

	4.2 Manipulating values
	4.2.1 Text manipulation functions
	4.2.2 Regular Expressions (RegEx)
	4.2.3 DIY: Working with PII
	4.2.4 Working with dates

	4.3 The structure of data
	4.3.1 Matrix or data frame?
	4.3.2 Array indexes
	4.3.3 Subsetting
	4.3.4 Sorting and re-ordering
	4.3.5 Aggregating data
	4.3.6 Reshaping data

	4.4 Control structures
	4.4.1 If statement
	4.4.2 For-loops
	4.4.3 While

	4.5 Functions
	4.6 Beyond this chapter
	4.6.1 Best practices
	4.6.2 Further study

	5 Record Linkage
	5.1 Edward Kennedy, Bill de Blasio, and Bayerische Motoren Werke
	5.2 How does record linkage work?
	5.3 Pre-processing the data
	5.4 De-duplication
	5.5 Deterministic record linkage
	5.6 Comparison functions
	5.6.1 Edit distances
	5.6.2 Phonetic algorithms
	5.6.3 New tricks, same heuristics

	5.7 Probabilistic record linkage
	5.8 Data privacy
	5.9 DIY: Matching people in the UK-UN sanction lists
	5.10 Beyond this chapter
	5.10.1 Best practices
	5.10.2 Further study

	6 Exploratory Data Analysis
	6.1 Visually detecting patterns
	6.2 The gist of EDA
	6.3 Visualizing distributions
	6.3.1 Skewed variables

	6.4 Exploring missing values
	6.4.1 Encodings
	6.4.2 Missing value functions
	6.4.3 Exploring missingness
	6.4.4 Treating missingness

	6.5 Analyzing time series
	6.6 Finding visual correlations
	6.6.1 Visual analysis on high-dimensional datasets

	6.7 Beyond this chapter

	7 Regression Analysis
	7.1 Measuring and predicting the preferences of society
	7.2 Simple linear regression
	7.2.1 Mean squared error
	7.2.2 Ordinary least squares
	7.2.3 DIY: A simple hedonic model

	7.3 Checking for linearity
	7.4 Multiple regression
	7.4.1 Non-linearities
	7.4.2 Discrete variables
	7.4.3 Discontinuities
	7.4.4 Measures of model fitness
	7.4.5 DIY: Choosing between models
	7.4.6 DIY: Housing prices over time

	7.5 Beyond this chapter

	8 Framing Classification
	8.1 Playing with fire
	8.1.1 FireCast
	8.1.2 What's a classifier?

	8.2 The basics of classifiers
	8.2.1 The anatomy of a classifier
	8.2.2 Finding signal in classification contexts
	8.2.3 Measuring accuracy

	8.3 Logistic regression
	8.3.1 The social science workhorse
	8.3.2 Telling the story from coefficients
	8.3.3 How are coefficients learned?
	8.3.4 In practice
	8.3.5 DIY: Expanding health care coverage

	8.4 Regularized regression
	8.4.1 From regularization to interpretation
	8.4.2 DIY: Re-visiting health care coverage

	8.5 Beyond this chapter

	9 Three Quantitative Perspectives
	9.1 Descriptive analysis
	9.2 Causal inference
	9.2.1 Potential outcomes framework
	9.2.2 Regression discontinuity
	9.2.3 Difference-in-differences

	9.3 Prediction
	9.3.1 Understanding accuracy
	9.3.2 Model validation

	9.4 Beyond this chapter

	10 Prediction
	10.1 The role of algorithms
	10.2 Data science pipelines
	10.3 K-Nearest Neighbors (k-NN)
	10.3.1 Under the hood
	10.3.2 DIY: Predicting the extent of storm damage

	10.4 Tree-based learning
	10.4.1 Classification and Regression Trees (CART)
	10.4.2 Random forests
	10.4.3 In practice
	10.4.4 DIY: Wage prediction with CART and random forests

	10.5 An introduction to other algorithms
	10.5.1 Gradient boosting
	10.5.2 Neural networks

	10.6 Beyond this chapter

	11 Cluster Analysis
	11.1 Things closer together are more related
	11.2 Foundational concepts
	11.3 k-means
	11.3.1 Under the hood
	11.3.2 In Practice
	11.3.3 DIY: Clustering for economic development

	11.4 Hierarchical clustering
	11.4.1 Under the hood
	11.4.2 In Practice
	11.4.3 DIY: Clustering time series

	11.5 Beyond this chapter

	12 Spatial Data
	12.1 Anticipating climate impacts
	12.2 Classes of spatial data
	12.3 Rasters
	12.3.1 Raster files
	12.3.2 Rasters and math
	12.3.3 DIY: Working with raster math

	12.4 Vectors
	12.4.1 Vector files
	12.4.2 Converting points to spatial objects
	12.4.3 Coordinate Reference Systems
	12.4.4 DIY: Converting coordinates into point vectors
	12.4.5 Reading shapefiles
	12.4.6 Spatial joins
	12.4.7 DIY: Analyzing spatial relationships

	12.5 Beyond this chapter

	13 Natural Language
	13.1 Transforming text into data
	13.1.1 Processing textual data
	13.1.2 TF-IDF
	13.1.3 Document similarities
	13.1.4 DIY: Basic text processing

	13.2 Sentiment Analysis
	13.2.1 Sentiment lexicons
	13.2.2 Calculating sentiment scores
	13.2.3 DIY: Scoring text for sentiment

	13.3 Topic modeling
	13.3.1 A conceptual base
	13.3.2 How do topics models work?
	13.3.3 DIY: Finding topics in presidential speeches

	13.4 Beyond this chapter
	13.4.1 Best practices
	13.4.2 Further study

	14 The Ethics of Data Science
	14.1 An emerging debate
	14.2 Bias
	14.2.1 Sampling bias
	14.2.2 Measurement bias
	14.2.3 Prejudicial bias

	14.3 Fairness
	14.3.1 Score-based fairness
	14.3.2 Accuracy-based fairness
	14.3.3 Other considerations

	14.4 Transparency and Interpretability
	14.4.1 Interpretability
	14.4.2 Explainability

	14.5 Privacy
	14.5.1 An evolving landscape
	14.5.2 Privacy strategies

	14.6 Beyond this chapter

	15 Developing Data Products
	15.1 Meeting people where they are
	15.2 Designing for impact
	15.2.1 Identify a user need
	15.2.2 Size up the situation
	15.2.3 Build a lean ``V1''
	15.2.4 Test and evaluate its impact, then iterate

	15.3 Communicating data science projects
	15.3.1 Presentations
	15.3.2 Written reports

	15.4 Reporting dashboards
	15.5 Prediction products
	15.5.1 Prioritization and targeting lists
	15.5.2 Scoring engines

	15.6 Continuing to hone your craft
	15.7 Where to next?

	16 Building Data Teams
	16.1 Establishing a baseline
	16.2 Operating models
	16.2.1 Center of excellence
	16.2.2 Hack teams
	16.2.3 Consultancy
	16.2.4 Matrix organizations

	16.3 Identifying roles
	16.3.1 The manager
	16.3.2 Analytics roles
	16.3.3 Data product roles
	16.3.4 Titles in the civil service system

	16.4 The hiring process
	16.4.1 Job postings and application review
	16.4.2 Interviews

	16.5 Final thoughts

	 Appendix A: Planning a Data Product
	Appendix A: Planning a Data Product
	Key Questions

	Appendix B: Interview Questions
	Getting to know the candidate
	Business acumen
	Project experience
	Whiteboard questions
	Statistics
	Causal inference
	Estimation versus prediction
	Machine learning
	Model evaluation
	Communication and visualization
	Programming

	Take-home questions

	 References
	 Index

